

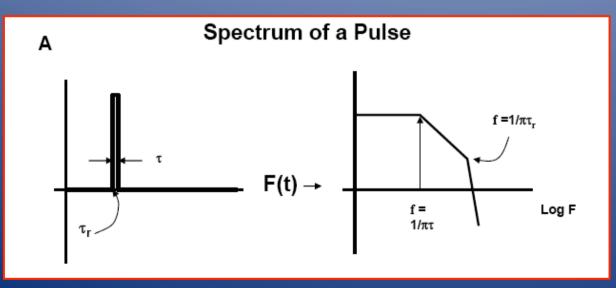
Spread Spectrum and Ultra-Wideband Technology

Willem Baan ASTRON

The Case for UWB

- "encourage the deployment on a reasonable and timely basis of advanced telecommunications capability" (FCC 1996)
- Broaden the deployment of broadband technologies
- Broadband includes any platform capable of transmitting highbandwidth intensive services
- Harmonized regulatory treatment of competing bb services
- Encourage and facilitate an environment that stimulates investment and innovation in broadband technologies and services
- Low Cost Utilizes baseband radio architecture implemented in CMOS
- Low Power Consumption Low transmit duty cycles
- High Capacity Large occupied bandwidth
 - Shannon-Hartley theorem
- Multipath Robust Frequency diversity

20 kHz Analog Cellular Voice channel

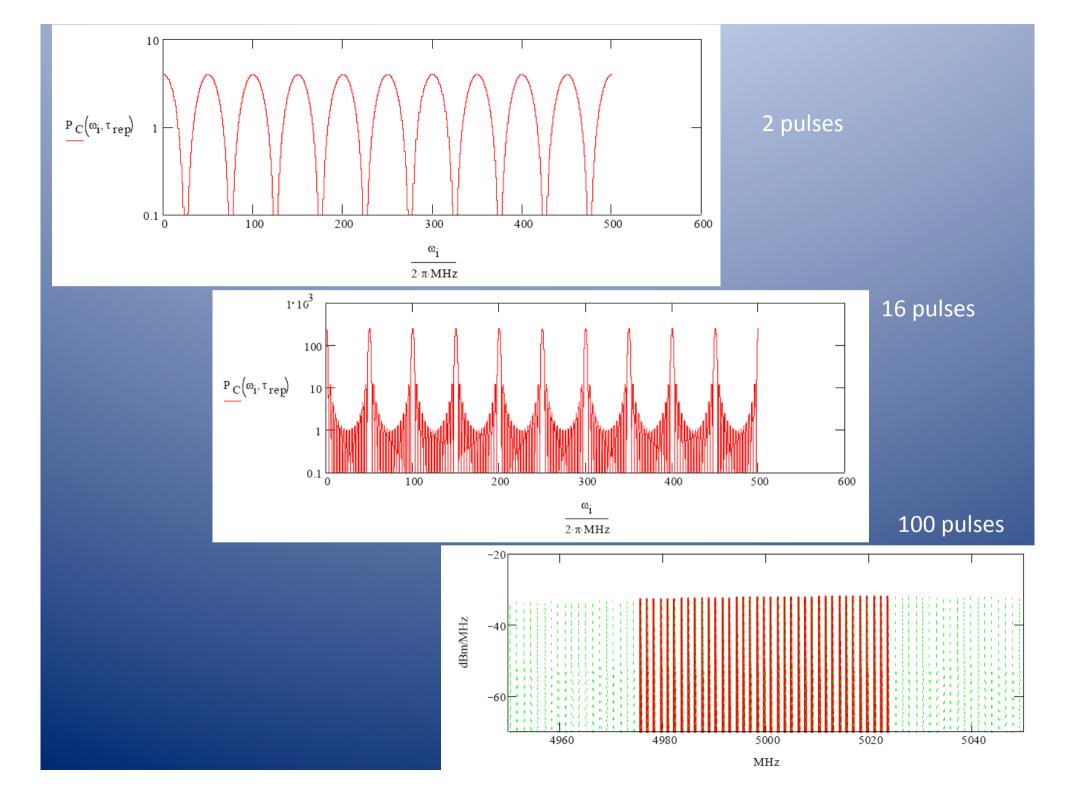

6 MHz TV channel

> 28 – 100 MHz Unlicensed Spread Spectrum Devices

1000 => 3000 – 8000 MHz Ultra-Wideband Devices (wall sensors)

What is UWB?

- Wireless communication or remote sensing using non-sinusoidal or limited cycle sinusoidal carriers
- UWB signals are typically produced by applying an impulse, monocycle, or step signal to a resonant antenna
- In the frequency domain, a very (ultra) wide spectrum signature is created
- Pulsed UWB a subset, OFDM & many other modulation schemes
- Pulsed UWB is cheapest and least controllable (most dangerous)



Early UWB history dates to birth of radio

Marconi spark gap transmitters generated impulse excitation of an antenna, producing an UWB-like spectrum

UWB Signal Generation

- Waveforms generated by edge of very fast rise-time pulse
- Impulse obtained from first derivative of step rise-time
- Monocycle obtained from first derivative of the impulse (or second derivative of step rise-time)
- Resulting narrow pulse used to "shock excite" a resonant antenna
- Properly designed antenna can function as bandpass filter, limiting the resultant spectra

Modulation Schemes

- Pulse Position Modulation (PPM)
 - Position of pulse (in time) determines binary state (0 or 1)

Bi-phase modulation (BPM)

- Pulse shape and its negative used to represent zero and one
- Pulse Amplitude Modulation (PAM)

Pulse amplitude level determines binary state

On-Off Keying (OOK)

Binary state determined by presence or absence of a pulse

- Direct sequence & DS code-division multiple access (DS-CDMA) High duty-cycle polarity coded sequences of pulses (up to GHz)
- Binary Phase Shift Keying (BPSK)

State is represented by change in signal phase

Orthogonal frequency division multiplexing (OFDM)

several sub-carriers phase & amplitude modulated - high OOB base

Multi-band modulation & multi-user techniques

Freq-hopping (FH), Time-division multiple access (TDMA)

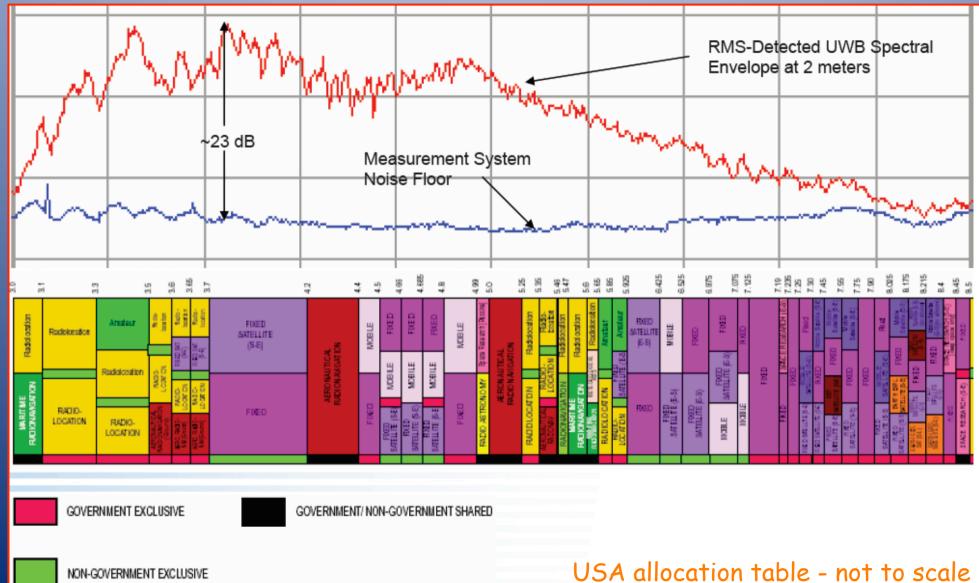
UWB Applications

- High-speed mobile local area networks (LANs)
- Wireless personal area networks (WPANs)
- Imaging systems (ground penetrating and through-wall radar, medical imaging)
- Electronic surveillance and detection
- Secure communications
- Personnel and asset tracking
- Automotive radar (anti-collision) and sensors

- Imaging Systems < 960 MHz
- Communications and Field Disturbance Sensors 3.1-10.6 GHz
- Short Range Vehicular Radar 22-29 GHz
- 960-3100 MHz range protected including GPS L1, L2, and L5 bands

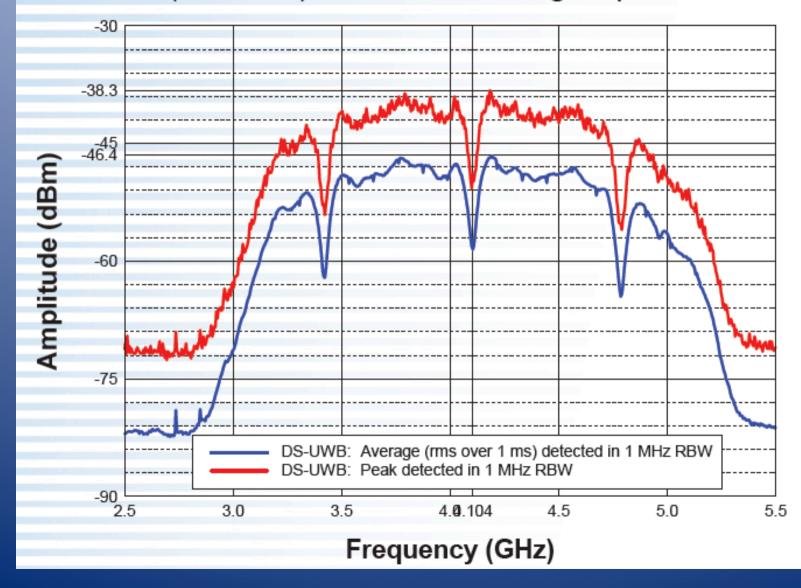
Operational Characteristics ITU-R SM.1754

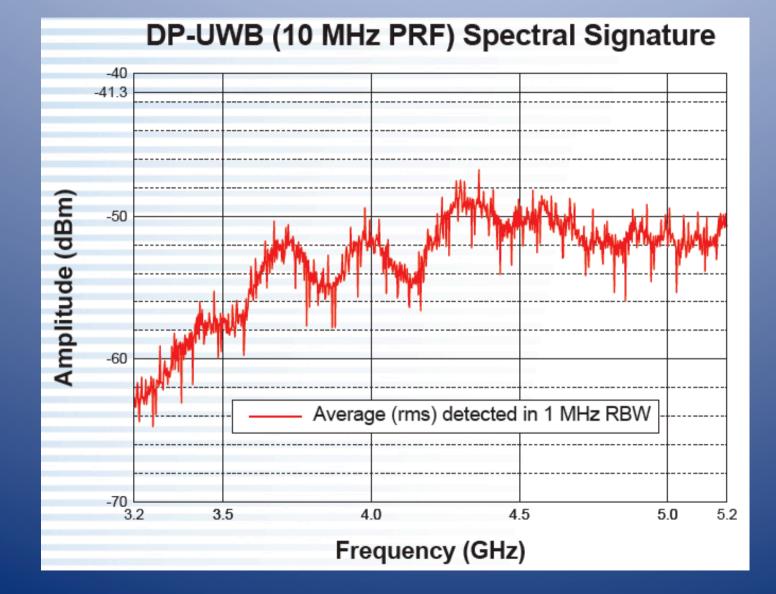
UWB application	Operational characteristics		
1 Radar imaging	 Mostly occasional use by professionals in limited numbers Use is limited to specific locations or geographic areas 		
Ground penetrating radar	 Occasional use by professionals at infrequent intervals and specific sites A specific application may have a limited number of devices that operate in mobile continuous use on roadways Transmission is directed towards the ground 		
In-wall radar imaging	 Occasional use at infrequent intervals Professional users: typically engineers, designers, and professional of the construction industry Transmission is directed toward a wall Devices are operated typically in direct contact with the wall to maximize measurement resolution and sensitivity 		
Through–wall radar imaging	 Device is transportable Used by trained personal: normally police, emergency teams, security and military Occasional use at infrequent intervals Deployed in limited numbers Transmission is directed towards a wall Devices may operate at some distance from the wall to maximize operation safety in case of hostile action 		


ITU-R SM.1754

UWB application	Operational characteristics			
Medical imaging	 May be used for a variety of health applications for imaging inside the body of a person or an animal 			
	 Indoor stationary occasional use by trained personnel 			
	 Transmission is directed towards a body 			
2 Surveillance	 Operate as "security fences" by establishing a stationary RF perimeter field and detecting the intrusion of persons or objects in that field Continuous outdoor and indoor use in a stationary manner 			
2 Waldandan and an				
3 Vehicular radar	 Mobile usage High-density use may occur on highways and major roads Terrestrial transportation use only Transmission is generally in a horizontal direction 			
4 Measurement	 Stationary indoor/outdoor use 			
5 Location sensing and tracking	 Typically fixed infrastructure; mostly stationary use Transmitters always under positive control 			
6 Communication	 High-density use may occur in certain indoor environments such as office buildings 			
	 Some applications have occasional use such as an UWB wireless mouse; others will operate at a higher percentage of time, such as a video link 			
	 Outdoor use may also occur 			

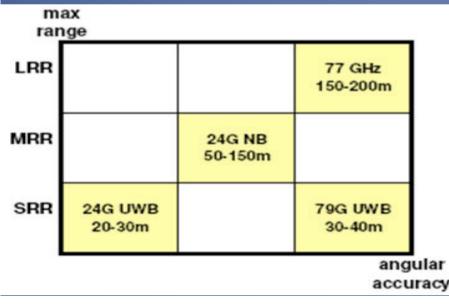
Spectrum Issues (ITU-R SM.1756)


- UWB communications require access to large swaths of radio spectrum
- UWB emissions incompatible with existing spectrum management protocol
- Spectrum identified for UWB operation will necessitate access to "restricted bands"
 - Restricted bands typically reserved for Safety-of-Life, national security and/or scientific research operations
- Requires operation in spectrum long used by incumbent licensees, often on a sole basis
- RAS, EESS (passive) and SRS (passive) low levels of interference received may have a degrading effect on passive service band usage.
- RR No. 5.340 enables the passive services to deploy and operate their systems
- Special attention should be given to the protection requirements of the passive services

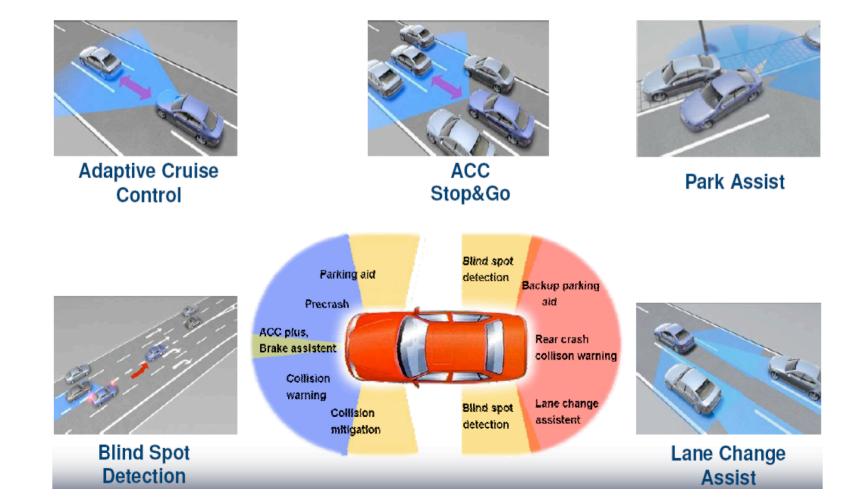

UWB spectral envelope - the problem

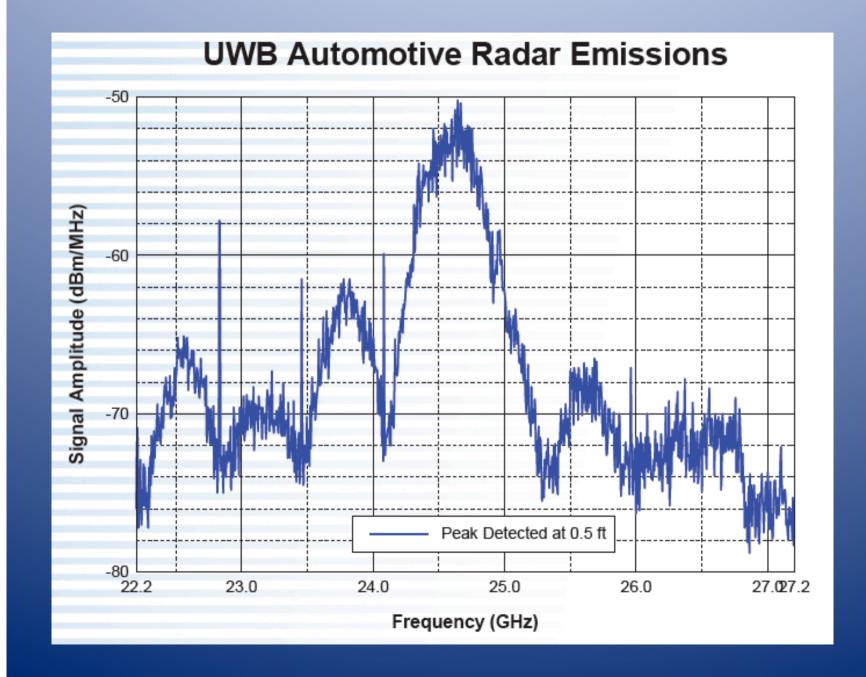
NON-GOVERNMENT EXCLUSIVE

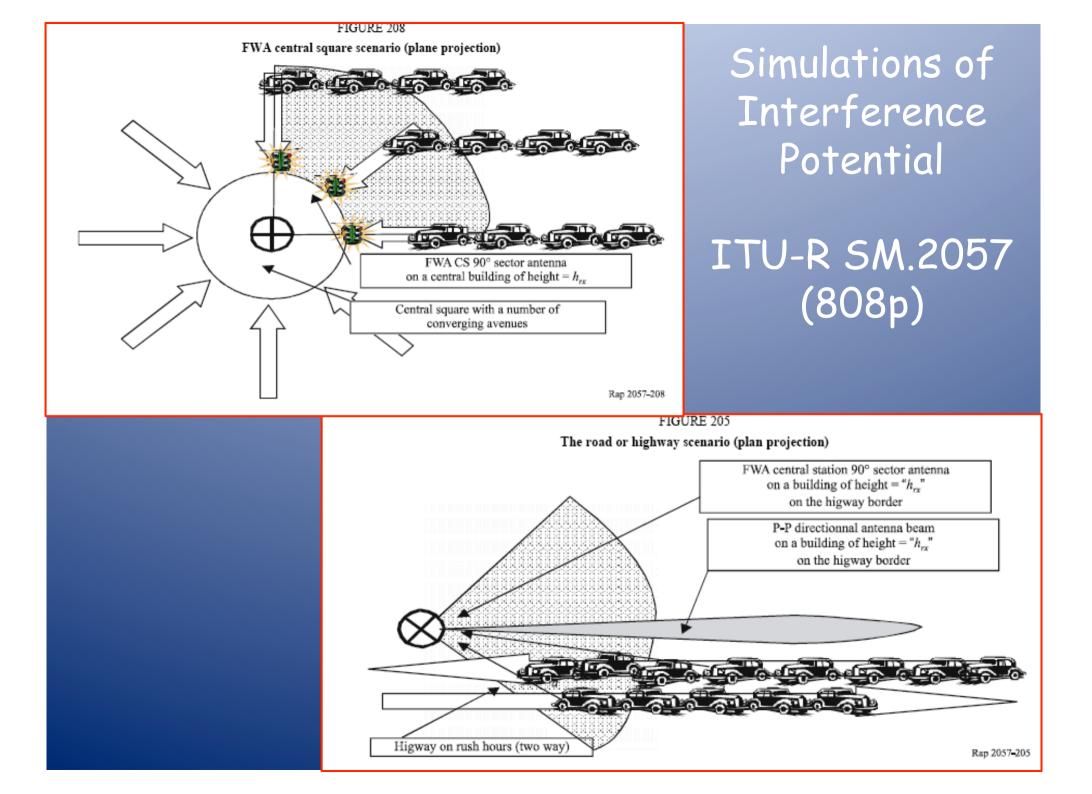
DS-UWB (full code) Peak and Average Spectral Envelopes

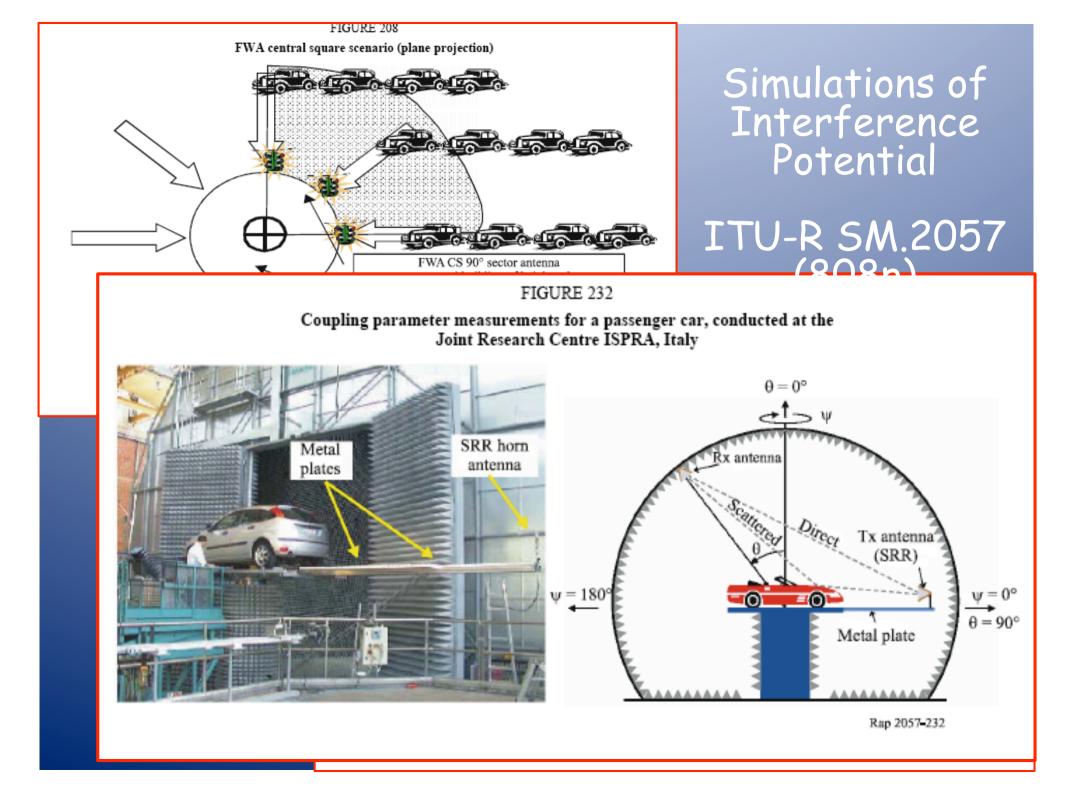


Short Range Radars (SRR) - automotive

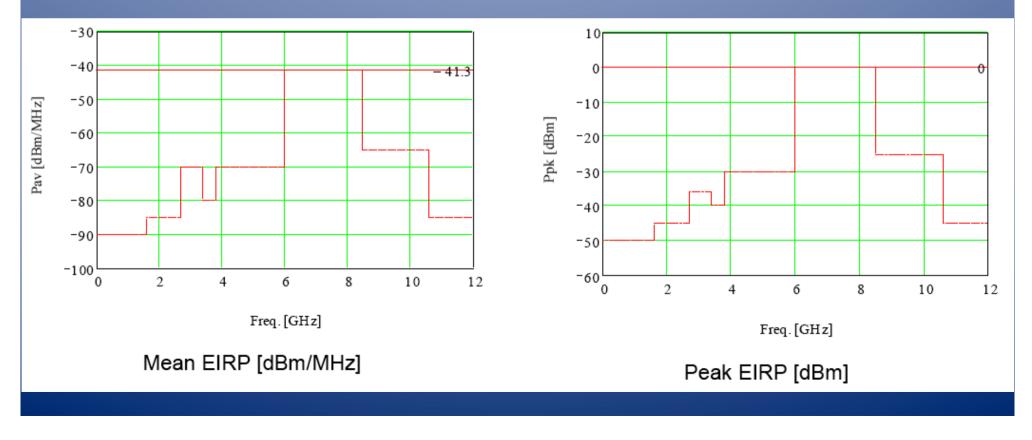

- 2004 two bands until 2013 (CEPT ECC & other admins)
 - 24 GHz temporary (21.65 26.65 GHz)
 - 79 GHz permanent (77 81 GHz)
- Transition to 79 GHz 'difficult' because system integration and validation (or cost aspect)
- 79 GHz needed for measurement range and angular accuracy
- ECC Decision to be made: remain at 24 GHz, or another extension at 26 GHz, or only move to 79 GHz

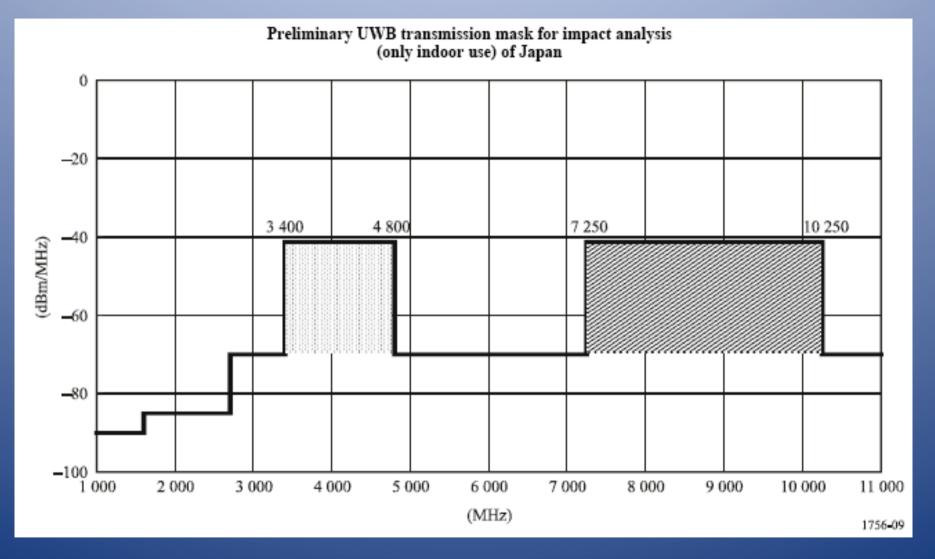

- ECC 'consensus' => do not prolong SRR at 24GHz




Short Range Radars (SRR) - automotive

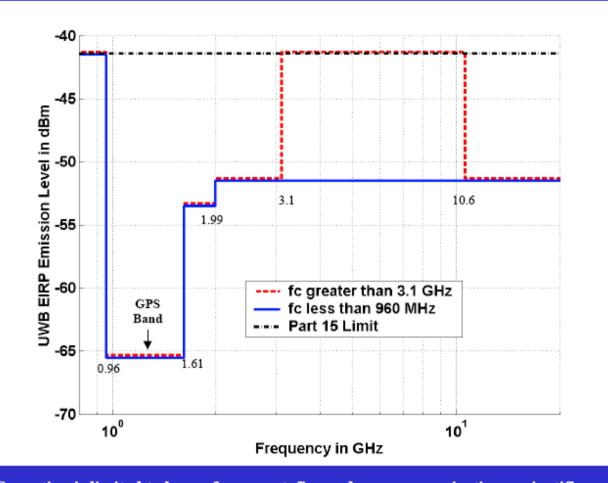
- 2004 ECC two bands until 2013
 - 24 GHz temporary (21.65 26.65 GHz)
 - 79 GHz permanent (77 81 GHz)
 - Transition to 79 GHz difficult because system integration and

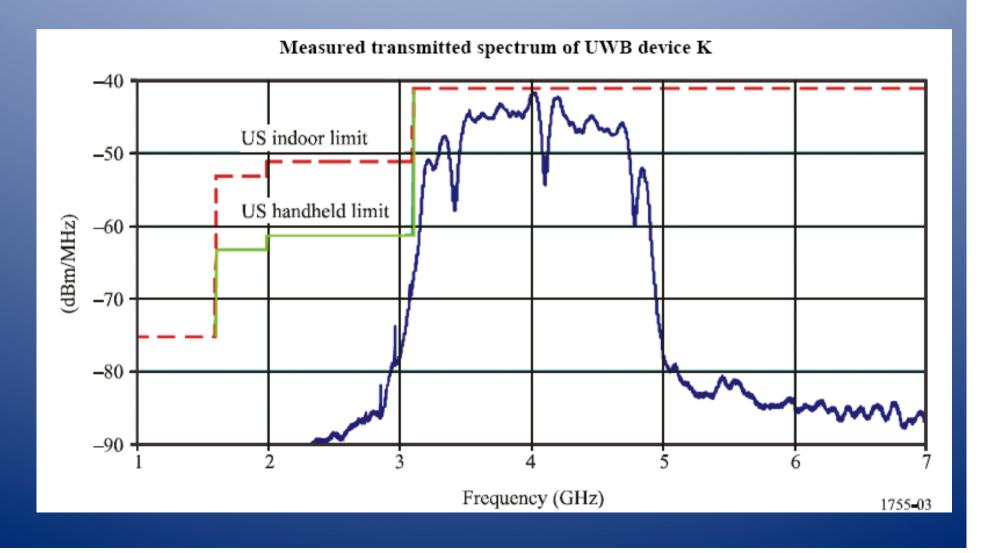


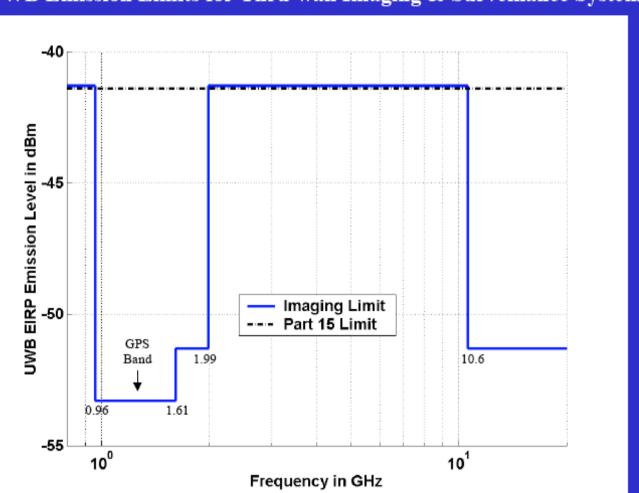


ECC Decisions 06(04) & 07(01) & 06(12)(amended)

- License exempt operation of UWB devices in freq range 1 10 GHz with constraints in emitted and average power levels
- Separate Decisions on fixed and mobile Material Sensing and Material Analysis (BMA) devices
- Pulse Repetition Frequency (PRF) > 5 MHz
- "Listen before talk" & "Detect and Avoid" devices







Preliminary

Operation is limited to law enforcement, fire and rescue organizations, scientific research institutions, commercial mining companies, and construction companies.

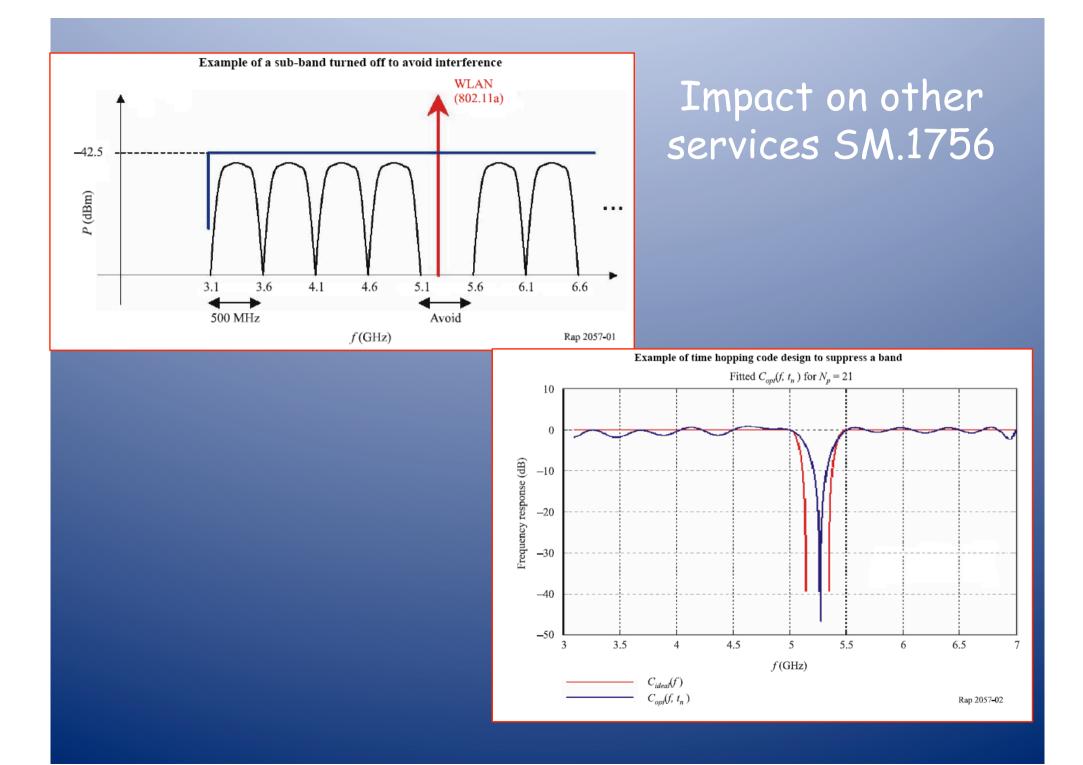
UWB Emission Limits for Thru-wall Imaging & Surveillance Systems

Preliminary

Operation is limited to law enforcement, fire and rescue organizations. Surveillance systems may also be operated by public utilities and industrial entities.

Weakness Associated with UWB Technology

- Compatibility of UWB receivers with "real world" electromagnetic environment remains unknown
 - Since UWB authorized as an unlicensed service, interference protection not provided or considered
- Limited studies of interference potential to UWB receivers
 - Particularly from high power emitters (e.g., radar, PCS and cellular, paging, etc)
 - Mitigation possible through careful frequency band selection
- Limited studies of interference potential from UWB to other services

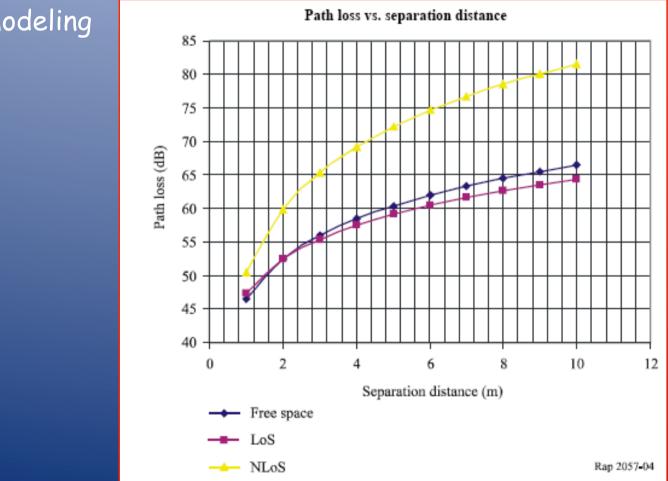

Mitigation techniques (SM.1755)

RAS

- it will be particularly difficult to filter out UWB signals
 - difficult even when keying is known they are cheap devices
- reduce antenna side lobe performance
- blanking in time and/or frequency not for UWB transmissions

UWB applications

- most effective attenuation to the threshold level in RAS band
- use of terrain shielding site & season dependent
- separation distances & exclusion zones
- set e.i.r.p. limit at 500 m range
- e.i.r.p. limit of -85 dBm/MHz offers full protection to RAS bands below 3 GHz and above 10.7 GHz



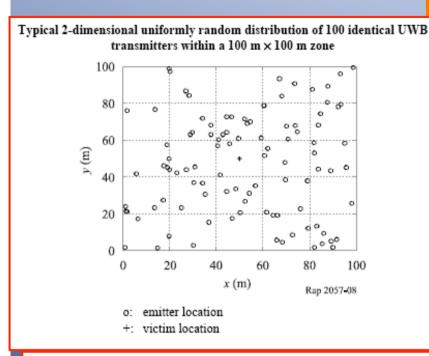
How to calculate things

		1
Frequency	MHz	F
Data rate	Mbit/s	D _r
Distance d	m	D
Tx e.i.r.p. density	dBm/MHz	P _{tx}
Bandwidth	MHz	В
Average tx power	dBm	$P_{tx} + 10 \log (B) = A$
Path loss 1 m	dB	$20 \log (4 \pi F/c) = B$
Path at distance d	dB	$20 \log (d) = C$
Rx antenna gain	dBi	G _{rx}
Rx power	dBm	$A - B - C + G_{rx} = D$
Noise per bit	dBm	$-174 + 10 \log (D_r) = G$
Noise figure	dB	NF
Average noise	dBm	G + NF = H
Required E_b/N_0	dB	E
Implementation loss	dB	Ι
Link margin	dB	D - H - E - I = M

Examples - single device

- P_{tx} = 65 dBm/MHz @ 1.4 GHz at 100m => -230.3 dBW/m2/Hz
- RA.769 thresholds: Cont = -255 and SL = -239 dBW/m2/Hz
- Free space coordination distance 1800 m & 280 m

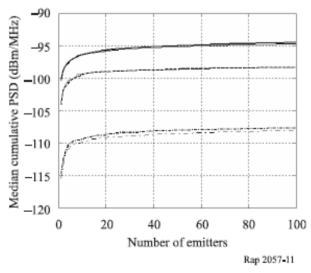
Propagation modeling

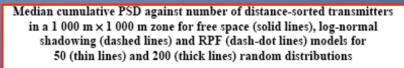

Estimates of separation distances for a single device using UWB technology, for different spectrum masks (for continuum measurements)

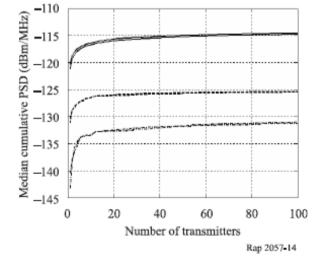
RAS frequency bands (MHz)	Required MCL (dB) slope mask (outdoor)	Required MCL (dB) United States mask (outdoor)	Resulting separation distance (km) slope mask (outdoor)	Resulting separation distance (km) United States mask (outdoor)
608-614	58	138	_	-
1 400.0-1 427.0	98	114	1.37	9.6
1 660.0-1 670.0	102	124	1.86	27
2 690.0-2 700.0	120	126	10	21
4 990.0-5 000.0	144	145	86	96

TABLE 269

Estimates of separation distances for a single device using UWB technology, for different spectrum masks (for spectral-line measurements)


RAS frequency bands (MHz)	Required MCL (dB) slope mask (outdoor)	Required MCL (dB) United States mask (outdoor)	Resulting separation distance (km) slope mask (outdoor)	Resulting separation distance (km) United States mask (outdoor)
1 400.0-1 427.0	82	98	0.21	1.37
1 610.6-1 613.8	87	109	0.335	4.46
1 660.0-1 670.0	88	109	0.36	4.32
4 800.0-4 990.0	130	133	18.2	26.2




Distributions of UWB devices

- 100 identical UWB devices in 100
 x 100 m or 1 km x 1 km zones
 (density 10⁴/km² or 10²/km²)
- e.i.r.p = -41.3 dBm/MHz
- Conversion to RA.769 => -90 dB

Median cumulative PSD against number of distance-sorted transmitters in a 100 m × 100 m zone for free-space (solid lines), log-normal shadowing (dashed lines) and RPF (dash-dot lines) models for 50 (thin lines) and 200 (thick lines) random distributions

Conclusions

- Despite the masks UWB devices are potential interferors
- UWB applications will be widespread
- Because of the generic masks, each type application needs to be addressed separately
- Observatories need to address issue of required separation distances
- Automotive radars (SRR) need special care
 - 'drive-in' observatories and nearby roads

UWB Documentation

- ITU-R SM.1055 Use of Spread Spectrum Techniques
- ITU-R SM.1754 Measurement techniques of UWB transmissions
- ITU-R SM.1755 Characteristics of ultra-wideband technology
- ITU-R SM.1756 Framework for the introduction of devices using ultra-wideband technology
- ITU-R SM.1757 Impact of devices using ultra-wideband technology on systems operating within radiocommunication services
- ITU-R SM.1794 Wideband instantaneous bandwidth spectrum monitoring systems
- ITU-R SM.2057 Studies related to the impact of devices using ultra-wideband technology on radiocommunication services
- CEPT ECC & FCC & other Recommendations

- Useful formulas
- Antenna response pattern
- Sensitivity of radio astronomy systems (theoretical considerations)
- Estimates of sensitivity and detrimental interference levels
- Impact on the radio astronomy service of unwanted emissions
- <u>Separation distances required for sharing</u>
- <u>Compatibility study between Mobile-Satellite Service in the</u> <u>1610-1626.5 MHz band and Radio Astronomy Service in the</u> <u>1610.6-1613.8 MHz band</u>
- <u>Conversion formula</u>
- <u>Calculations</u>

CRAF Web-based Calculation Tools

- <u>Conversion from pfd level (dB(W/m²)) into field-strength (dB(microVolt/meter)) and e.i.r.p. (dBm)</u>
- <u>Conversion from pfd level (dB(W/m²)) into e.i.r.p. (dBm)</u>
- <u>Conversion from erp (dBm) to e.i.r.p. (dBm)</u>
- <u>Conversion from e.i.r.p. (dBm) into pfd level (dB(W/m²))</u>
- <u>Conversion from e.i.r.p.(dBm) into field-strength (dB(microVolt/meter)), pfd level (dB(W/m²) and power level (dBW)</u>
- <u>Conversion from field-strength (dB(microVolt/meter)) into pfd level (dB(W/m²))</u>
- <u>Conversion from power (dB(W)) to power flux density, pfd, (dB(W/m²))</u>
- <u>Conversion from hour angle and declination to azimuth and elevation</u>
- Estimates of sensitivity and detrimental interference levels for radio astronomy (Rec. ITU-R RA.769)
- Impact on the radio astronomy service of unwanted emissions in excess of the levels defined by Recommendation ITU-R RA.769. (Re: ITU-R 1-7/26 (2001) and ITU-R SM.1633)
- <u>Estimate of visibility radius from a space station, aeronautical station or HAPS station to a radio astronomy station</u>
- <u>Estimate of acceptable e.i.r.p. of interfering transmitter using free space attenuation (Rec. ITU-R P.525)</u>
- <u>Estimate of acceptable e.i.r.p. of interfering transmitter (for frequencies above 0.7 GHz) (Rec. ITU-R P.452)</u>
- Estimate of acceptable e.i.r.p. of interfering transmitter (for frequencies between 0.1 and 105 GHz) (Rec. ITU-R P.620)
- <u>Calculation of pfd value at the surface of the Earth for FSS satellite</u>
- <u>Transmission loss for specified distance between transmitter and receiver (for frequencies above 0.7 GHz) (Rec. ITU-R P.</u> <u>452)</u>
- Path loss attenuation for specified distance between transmitter and receiver (Rec. ITU-R P.525)
- Transmission loss for diffraction scenario for specified distance between transmitter and receiver (Rec. ITU-R P.452 and P. 526)
- Rough separation distance estimate from e.i.r.p. and pfd for single interferer and simple free space propagation
- Separation distances required for sharing (Rec. ITU-R P.452)
- Separation distances for short range devices required to protect a radio astronomy station (Rec. ITU-R P.452)
- <u>Separation distances for short range devices required to protect victim service (Rec. ITU-R P.1411 using free space approach)</u>
- <u>Separation distances for terrestrial transmitting stations using free space attentuation (Rec. ITU-R P.525)</u>
- Separation distances for land MESs at 1.6 GHz (ERC Report 26)
- Separation distances for terrestrial transmitting stations (ERC Report 26 and for frequencies between 0.7 and 30 GHz)
- <u>SEAMCAT</u>

arigato gozaimasu

ありがとうございます