

Up in smoke ... destructive interference

Harvey Liszt ALMA & NRAO, CHARLOTTESVILLE

Harvey Liszt

Destructive & Disruptive Interference

Harvey Liszt ALMA & NRAO, CHARLOTTESVILLE

Harvey Liszt

An emerging issue

- Radio systems for voice/data were not generally of concern, even when they have stronger emissions
 - A cell phone emits more power than a car radar
- Radiolocation and radionavigation systems (radar) are of such concern
 - They typically use much higher power
 - Some w/ low power operate at high frequency, perhaps in proximity to the telescope

An emerging issue

- Radio systems for voice/data were not generally of concern, even when they have stronger emissions
 - A cell phone emits more power than a car radar
- Radiolocation and radionavigation systems (radar) are of such concern
 - They typically use much higher power
 - Some w/ low power operate at high frequency, perhaps in proximity to the telescope

The basics

- As summarized in ITU-R Report RA.2188 it takes ~ 5-35 mW input power to burn out a modern RAS receiver
 - -1 V across 50 ohm, what could be simpler?
 - SiS junction or transistor amplifier \sim same
- There's much we don't know but it seems to happen quickly, depends only on wattage
 - Some tests done for defense in 1980's
 - The most sensitive devices had more problems at high signal levels, development was stopped

Harvey Liszt

The basics

- As summarized in ITU-R Report RA.2188 it takes ~ 5-35 mW input power to burn out a modern RAS receiver
 - -1 V across 50 ohm, what could be simpler?
 - SiS junction or transistor amplifier \sim same
- There's much we don't know but it seems to happen quickly, depends only on wattage
 - Some tests done for defense in 1980's
 - The most sensitive devices had more problems at high signal levels, development was stopped

• Destructive mW for transistor amplifiers

TABLE 1

Representative antenna diameters and values of F_d , the potentially damaging pfd for HFET input stages from 1-90 GHz

Frequency (GHz)	RA antenna diameter (m)	RA antenna effective area (m ²)	P _d (mW)	<i>F_d</i> (dB(W/m ²))	e.i.r.p. _d at 400 km (dBW)
1-20	25	344	15	-43	80
1-20	100	5 500	15	-55	68
20-50	25	344	10	-45	78
20-50	100	5 500	10	-57	66
50-90	25	344	5	-48	75
50-90	100	5 500	5	-60	63

• Destructive mW for transistor amplifiers

TABLE 1

Representative antenna diameters and values of F_d , the potentially damaging pfd for HFET input stages from 1-90 GHz

Frequency (GHz)	RA antenna diameter (m)	RA antenna effective area (m ²)	P _d (mW)	<i>F_d</i> (dB(W/m ²))	e.i.r.p. _d at 400 km (dBW)
1-20	25	344	15	-43	80
1-20	100	5 500	15	-55	68
20-50	25	344	10	-45	78
20-50	100	5 500	10	-57	66
50-90	25	344	5	-48	75
50-90	100	5 500	5	-60	63

• Destructive mW for transistor amplifiers

TABLE 1

Representative antenna diameters and values of F_d , the potentially damaging pfd for HFET input stages from 1-90 GHz

Frequency (GHz)	RA antenna diameter (m)	RA antenna effective area (m ²)	P _d (mW)	<i>F_d</i> (dB(W/m ²))	e.i.r.p. _d at 400 km (dBW)
1-20	25	344	15	-43	80
1-20	100	5 500	15	-55	68
20-50	25	344	10	-45	78
20-50	100	5 500	10	-57	66
50-90	25	344	5	-48	75
50-90	100	5 500	5	-60	63

TABLE 2

Representative values of F_d , the potentially damaging pfd for SIS mixer receivers at 90-275 GHz, for representative radio astronomy sites

Observatory ⁽¹⁾	Junction area (µm) ²	Number of junctions	Antenna diameter (m)	Antenna effective area (m ²)	P _d (mW)	F _d (dB(W/m ²)	e.i.r.p. _d at 400 km (dBW)
ALMA	3.8	8	12	79.2	55	-32	91
CARMA 6 m	1.21	1	6	19.8	4	-37	86
CARMA 6 m	2.24	1	6	19.8	5	-36	87
CARMA 10 m	1.44	2	10	55.0	9	-38	85
CARMA 10 m	3.8	4	10	55.0	27	-33	90
IRAM Bure	4.0	2	15	124	14	-40	83
IRAM Veleta	2.25	6	30	495	32	-42	81
IRAM Veleta	1.44	4	30	495	17	-45	78
Kitt Peak	8.55	6	12	79.2	62	-31	92
Onsala	4.01	2	20.1	222	14	-42	81

Harvey Liszt

TABLE 2

Representative values of F_d , the potentially damaging pfd for SIS mixer receivers at 90-275 GHz, for representative radio astronomy sites

Observatory ⁽¹⁾	Junction area (µm) ²	Number of junctions	Antenna diameter (m)	Antenna effective area (m ²)	P _d (mW)	F _d (dB(W/m ²)	e.i.r.p. _d at 400 km (dBW)
ALMA	3.8	8	12	79.2	55	-32	91
CARMA 6 m	1.21	1	6	19.8	4	-37	86
CARMA 6 m	2.24	1	6	19.8	5	-36	87
CARMA 10 m	1.44	2	10	55.0	9	-38	85
CARMA 10 m	3.8	4	10	55.0	27	-33	90
IRAM Bure	4.0	2	15	124	14	-40	83
IRAM Veleta	2.25	6	30	495	32	-42	81
IRAM Veleta	1.44	4	30	495	17	-45	78
Kitt Peak	8.55	6	12	79.2	62	-31	92
Onsala	4.01	2	20.1	222	14	-42	81

Harvey Liszt

Something of a surprise

• The authors of RA. 2188 originally thought transistor amplifiers were more resistant

Orbiting EESS(active) SAR

All SAR capable of damaging receivers on 25m – 100m telescopes

Synthetic Aperture Radar (SAR)

Harvey Liszt

https://www.sfcgonline.org

Active Sensor Information for Radio Astronomers

At SFCG-30, the SFCG agreed to assist radio astronomers in protecting their sensitive receivers from damaging interference from spaceborne radars used for Earth observation and remote sensing by providing useful links and related information.

Harvey Liszt

Active Sensors Look-Up Table

Currently Op	Currently Operational Spaceborne Active Sensor Missions (Updated: June 2011)					
Mission	Agency	ITU Name	Frequency (MHz)	Radiated Power (W)		
Aquarius Scatterometer	NASA	AQUARIUS	1260	200		
ERS-2 SAR/WS /RA[<u>1]</u>	ESA	ERS-1	5300/5300/13800	4800/4000/134		
RADARSAT-1/2 SAR	CSA	RADARSAT-1A RADARSAT-2C RADARSAT-2D RADARSAT-2E RADARSAT-2F	5300	5000		
ENVISAT ASAR/RA-2	ESA	ENVISAT	5300/13575, 3200	4800/114, 65		
COSMO-SkyMed	ASI	COSMO SKYMED	9600	2800		
TerraSAR-X SAR	DLR	TERRASAR	9650	2260		

This table is also available in MS-Word format. Additional information on Envisat and Metop sensors is also available. At SFCG-31, document SF31-9DR1 on "Potential Damage to RAS Sites by EESS (active) Systems" was presented by NASA providing calculations of the power levels received vis-à-vis power levels given in Report ITU-R RA.2188.

Harvey Liszt

Active Sensors Look-Up Table

Currently Op	Currently Operational Spaceborne Active Sensor Missions (Updated: June 2011)					
Mission	Agency	ITU Name	Frequency (MHz)	Radiated Power (W)		
Aquarius Scatterometer	NASA	AQUARIUS	1260	200		
ERS-2 SAR/WS /RA[<u>1]</u>	ESA	ERS-1	5300/5300/13800	4800/4000/134		
RADARSAT-1/2 SAR	CSA	RADARSAT-1A RADARSAT-2C RADARSAT-2D RADARSAT-2E RADARSAT-2F	5300	5000		
ENVISAT ASAR/RA-2	ESA	ENVISAT	5300/13575, 3200	4800/114, 65		
COSMO-SkyMed	ASI	COSMO SKYMED	9600	2800		
TerraSAR-X SAR	DLR	TERRASAR	9650	2260		

This table is also available in MS-Word format. Additional information on Envisat and Metop sensors is also available. At SFCG-31, document SF31-9DR1 on "Potential Damage to RAS Sites by EESS (active) Systems" was presented by NASA providing calculations of the power levels received vis-à-vis power levels given in Report ITU-R RA.2188.

Harvey Liszt

At SFCG-30, the SFCG agreed to assist radio astronomers in protecting their sensitive receivers from damaging interference from spaceborne radars used for Earth observation and remote sensing by providing useful links and related information.

Table 8 – Comparison of Typical Power Flux Density Levels at Earth's Surface with RAS Threshold Values

	Sensor type					
Parameter	SAR	Altimeter	Scatterometer	Precipitation radars	Cloud profile radars	
Radiated power (W)	4400	20	4000	1013	1500	
Antenna gain (dB)	36.4	43.3	34	47.7	63.4	
Orbital altiude (km)	225	1 336	785	400	705	
Incidence Angle (deg)	21	0	32	0	0	
PFD (dB(W/m ²))	-45.8	-77.2	-50.4	-45.3	-32.7	
RAS Threshold (dB(W/m ²))	-60	-60	-60	-60	-45	
Margin (dB)	-14.2	+17.2	-9.6	-14.7	-12.3	

Harvey Liszt

At SFCG-30, the SFCG agreed to assist radio astronomers in protecting their sensitive receivers from damaging interference from spaceborne radars used for Earth observation and remote sensing by providing useful links and related information.

Table 8 – Comparison of Typical Power Flux Density Levels at Earth's Surface with RAS Threshold Values

	Sensor type					
Parameter	SAR	Altimeter	Scatterometer	Precipitation radars	Cloud profile radars	
Radiated power (W)	4400	20	4000	1013	1500	
Antenna gain (dB)	36.4	43.3	34	47.7	63.4	
Orbital altiude (km)	225	1 336	785	400	705	
Incidence Angle (deg)	21	0	32	0	0	
PFD (dB(W/m ²))	-45.8	-77.2	-50.4	-45.3	-32.7	
RAS Threshold (dB(W/m ²))	-60	-60	-60	-60	-45	
Margin (dB)	-14.2		-9.6	-14.7	-12.3	

Coda

Lesser but permanent damage can be inflicted by substantially lower input power but quantifying this is impractical

Why higher frequency is worse for terrestrial interferers

Cell phones radiate more power than car radars by far (factor 10) but cell phone emission is isotropic and has low flux

MM-wave portable devices emit less power but have narrow beams and higher *eirp*

It is much easier to focus all the transmitted power onto the surface of an RAS dish *or a stray sidelobe*

Parameter	Radar A ¹ Automotive radar For front applications for e.g. for adaptive cruise control	Radar B Automotive high- resolution radar For front applications
Sub-band used (GHz)	76-77	77-81
Typical operating range (m)	Up to 250	Up to 100
Range resolution (cm)	75	7.5
Maximum c.i.r.p. (dBm)	55	33
Maximum transmit power to antenna (dBm)	10	10
Antenna Azimuth Scan Angle (degrees)	TX / RX: ± 15	TX: ± 22.5 RX: ± 25
Antenna Elevation HPBW (degrees)	TX / RX: ± 3	TX / RX: ± 5.5

Parameter	Radar A ¹ Automotive radar For front applications for e.g. for adaptive cruise control	Radar B Automotive high- resolution radar For front applications
Sub-band used (GHz)	76-77	77-81
Typical operating range (m)	Up to 250	Up to 100
Range resolution (cm)	75	7.5
Maximum c.i.r.p. (dBm)	55	33
Maximum transmit power to antenna (dBm)	10	10
Antenna Azimuth Scan Angle (degrees)	TX / RX: ± 15	TX: ± 22.5 RX: ± 25
Antenna Elevation HPBW (degrees)	TX / RX: ± 3	TX / RX: ± 5.5

Parameter	Radar A ¹ Automotive radar For front applications for e.g. for adaptive cruise control	Radar B Automotive high- resolution radar For front applications
Sub-band used (GHz)	76-77	77-81
Typical operating range (m)	Up to 250	Up to 100
Range resolution (cm)	75	7.5
Maximum e.i.r.p. (dBm)	55	33
Maximum transmit power to antenna (<u>dBm</u>)	10	10
Antenna Azimuth Scan Angle (degrees)	TX / RX: ± 15	TX: ± 22.5 RX: ± 25
Antenna Elevation HPBW (degrees)	TX / RX: ± 3	TX / RX: ± 5.5

Parameter	Radar A ¹ Automotive radar For front applications for e.g. for adaptive cruise control	Radar B Automotive high- resolution radar For front applications
Sub-band used (GHz)	76-77	77-81
Typical operating range (m)	Up to 250	Up to 100
Range resolution (cm) Maximum e.i.r.p. (dBm)	75 55	7.5 33
Maximum transmit power to antenna (<u>dBm</u>)	10	10
Antenna Azimuth Scan Angle (degrees)	TX / RX: ± 15	TX: ± 22.5 RX: ± 25
Antenna Elevation HPBW (degrees)	TX / RX: ± 3	TX / RX: ± 5.5

How near can car radar be allowed? For 76 GHz radar HPBW = $6^\circ = 0.1$ radian So an antenna fills the radar beam at distance = 10 antenna diameters

For 100m telescope, 1 km For 30m telescope, 300 m For ALMA, 120m

Detectors will not work properly in the presence of high signal levels This is what caused DARPA to stop

developing the most sensitive amplifiers

Detectors will not work properly in the presence of high signal levels

This is what caused DARPA to stop developing the most sensitive amplifiers

SiS junctions suffer 1% gain compression at input power of 0.2 nW (ALMA memo 401) and subtle intermodulation products at 0.1 nW according to NRAO

A car radar with eirp = 55 (33) dBm, received with 0 dBi gain will produce an input power of 0.1 nW at a distance of 560 (45) m

SiS junctions suffer 1% gain compression at input power of 0.2 nW (ALMA memo 401) and subtle intermodulation products at 0.1 nW according to NRAO

How does $0.1nW = 10^{-10} W$ compare with the receiver noise power?

 $kTB = 1.6x10^{-23} * 15 * 16x10^9 = 4x10^{-12} W$

How does $0.1nW = 10^{-10} W$ compare with the receiver noise power?

 $kTB = 1.6x10^{-23} * 15 * 16x10^9 = 4x10^{-12} W$

Only factor 25 difference

Harvey Liszt

Conclusion: car radars begin to disrupt radio astronomy receivers at the same distances where they could destroy them

Corollary: The cross-section for disruption by an orbiting SAR is much larger than suggested by the size of the RAS primary beam

Corollary: The cross-section for disruption by an orbiting SAR is much larger than suggested by the size of the RAS primary beam

Orbiting radars can put 1 W across a dish

Corollary: The cross-section for disruption by an orbiting SAR is much larger than suggested by the size of the RAS primary beam

Orbiting radars can put 1 W across a dish

The ratio between 1 W and 0.1 nW is much greater than any antenna gain in the problem

Corollary: The cross-section for disruption by an orbiting SAR is much larger than suggested by the size of the RAS primary beam

Orbiting radars can put 1 W across a dish

The ratio between 1 W and 0.1 nW is much greater than any antenna gain

Our receivers are functioning in a disruptive environment with continuous jamming

Corollary: The cross-section for disruption by an orbiting SAR is much larger than suggested by the size of the RAS primary beam

Orbiting radars can put 1 W across a dish

The ratio between 1 W and 0.1 nW is much greater than any antenna gain

Our receivers are functioning in a battle-field environment with continual disruption

Corollary: The cross-section for disruption by an orbiting SAR is much larger than suggested by the size of the RAS primary beam

Orbiting radars can put 1 W across a dish

The ratio between 1 W and 0.1 nW is much greater than any antenna gain

Created by "friendly fire" from other science services