
Electro Magnetic Compatibility

Masatoshi Ohishi

National Astronomical Observatory of Japan IUCAF Chairman

Radio Noise

EMC


- is a branch of electrical sciences which studies the unintentional generation, propagation and reception of electromagnetic energy with reference to the unwanted effects (interference, or EMI) that such energy may induce
- aims to ensure that equipment items or systems will not interfere with or prevent each other's correct operation through spurious emission and absorption of EMI
- is the control of EMI so that unwanted effects are prevented

Standardization Bodies for EMC Regulations

International		Regional		National	
IEC	TC77	Europe	CEN	US	FCC
	CISPR		CENELEC		SAE
ISO			ETSI	UK	BSI
				DE	VDE
				JP, CN, KR,,,,	

IEC: International Electrotechnical Commission ISO: International Organization for Standardization CENELEC: Comité Européen de Normalisation Electrotechniques ETSI: European Telecommunications Standards Institute FCC: Federal Communications Commission

CISPR Comité International Spécial des Perturbations Radioélectriques


IEC International Electrotechnical Commission					
CIS	CISPR International Special Committee on Radio Interference * Specifies limits and measurement methods of electromagnetic disturbances emitted from electrical and electronic equipment for the protection of radio services.				
	SC-A	Radio-interference measurements and statistical methods			
	SC-B Interference related to effects of industrial, scientific, and medical radio-frequency apparatus on other (heavy) industrial equipment, overhead power lines, high-voltage equipment, and electrical traction devices				
	SC-D Effects of electromagnetic disturbances related to electrical/electronic equipment on vehicles and internal- combustion-engine-powered devices				
-	SC-F	Interference related to household appliances tools, lighting equipment, and similar apparatus			
	SC-H	Limits for the protection of radio services			
	SC-I	Electromagnetic compatibility of information technology equipment, multimedia equipment, and radio receivers			

CEPT, EBU, ETSI, IARU, ISO, ITU-R, ITU-T are liaison members of CISPR

CISPR Publications (1)

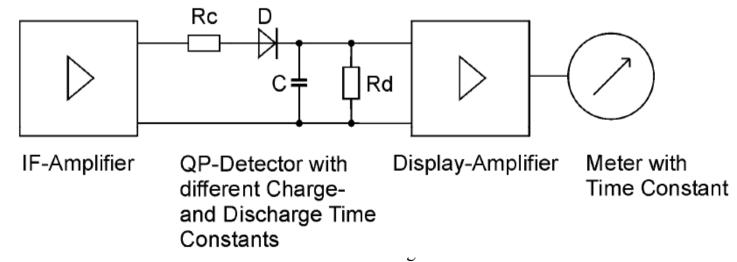
- CISPR 11 Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment --Electromagnetic Disturbance Characteristics --Limits and Methods of Measurement.
- CISPR 12 Vehicles, boats, and internal combustion engine driven devices -radio disturbance characteristics -limits and methods of measurement
- CISPR 14 Electromagnetic Compatibility --Requirements for Household Appliance, Electric Tools, and Similar Apparatus: 1) Emissions, 2) Immunity.

CISPR Publications (2)

- CISPR 15 Limits and methods of measurement of radio disturbance characteristics of Electrical lighting and similar equipment.
- CISPR 22 Information Technology Equipment --Radio Disturbance Characteristics -- Limits and Methods of Measurement.
- CISPR 24 Information Technology Equipment --Immunity characteristics -- Limits and Methods of Measurement.
- CISPR 25 Radio disturbance characteristics for the protection of receivers used on board vehicles, boats, and on devices -- Limits and Methods of Measurement.

2014 April 10

IUCAF School in Santiago

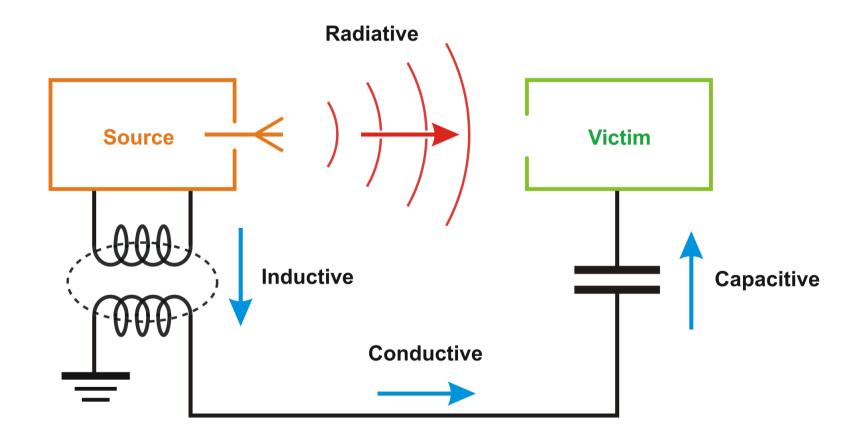

CISPR Publications (3)

 CISPR 16 – Specification for radio disturbance and immunity measuring apparatus and methods

Q.P.

- Defined in CISPR 16: specifying equipment and methods for measuring disturbances and immunity; specific to EMI measurement
- Was believed to better indicate the subjective annoyance level experienced by a listener hearing impulsive interference to an AM radio station

Measure, measure,,,



2014 April 10

IUCAF School in Santiago

Coupling Mechanisms

In **CISPR**

- Limits are defined:
 - > Freq < 30 MHz conductive emissions by means of "voltage" or "common-mode current"
 - > Freq > 30 MHz radiative emissions by means of electric field strength at 10 m

CISPR 22: conductive emissions at a telecommunication port

Class A: for industrial use

Freq. Range (MHz)	Voltage Limits dB(μV)		Common-mode current Limits dB(μA)	
	Quasi Peak	Average	Quasi Peak	Average
0.15 ~ 0.5	97~87	84~74	53~43	40~30
0.5 ~ 30	87	74	43	30

Class B: for residential use

Freq. Range (MHz)	Voltage Limits dB(μV)		Common-mode current Limits dB(µA)	
	Quasi Peak	Average	Quasi Peak	Average
0.15 ~ 0.5	84~74	74~64	40~30	30~20
0.5 ~ 30	74	64	30	20

V (dB(μ V)) = A (dB(μ A))+20log150 = A (dB(μ A))+44

2014 April 10

IUCAF School in Santiago

CISPR 22: radiative emissions at a distance of 10m

Class A: for industrial use

Freq. Range (MHz)	Field Limits dB(μV/m)	
	Quasi Peak	
30 ~ 230	40	
230 ~ 1000	47	

Class B: for residential use

Freq. Range (MHz)	Field Limits dB(μV/m)	
	Quasi Peak	
30 ~ 230	30	
230 ~ 1000	37	



International – Regional - National

	Emissions	Immunity	Overvoltage
International standards	CISPR22	CISPR24	IEC Standards, ITU-T K Series
Japan	Report to the Telecommunications Council VCCI Technical Requirements	Report to the Telecommunications Council Industrial Guidelines	TTC Standards
EU	EN 55022 Regulations in each country UK: BS Germany: VDE	EN 55024 Regulations in each country UK: BS Germany: VDE	IEC Standards
USA	FCC 47CFR Part15 Subpart B NEBS: GR-1089-CORE	NEBS: GR-1089-CORE	NEBS: GR-1089-CORE
Korea	KCC KN22	KCC KN24	IEC Standards
China	GB 9254	GB/T 17618	GB/T 17626.5

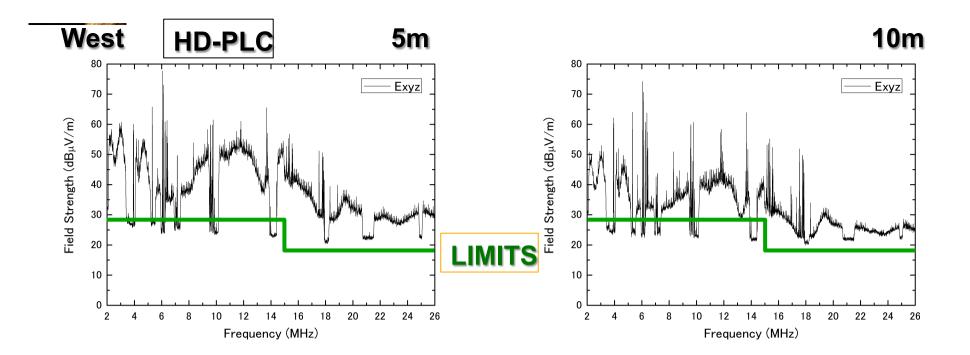
- BS: British Standards
- EN: European Norm
- GB: China national standards (Guobiao standard in Chinese)
- KCC: Korea Communications Commission
- KN: Korean national standards
- NEBS: Network Equipment-Building Systems
- TTC: the Telecommunication Technology Committee
- VDE: Association for Electrical, Electronic & Information Technologies (Verband der Elecktrotechnik, Elektronik und Informationstechnik)

: Regulation

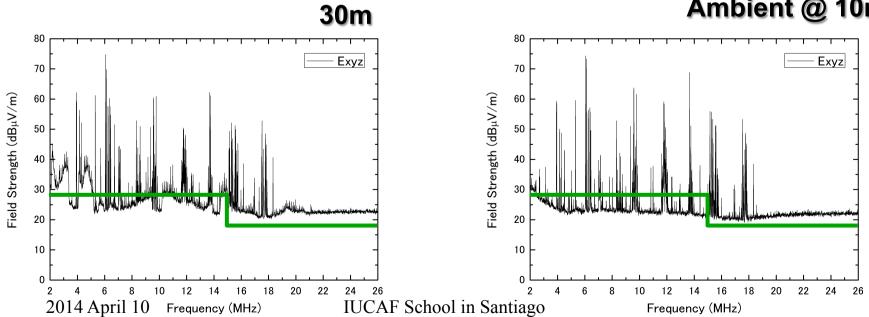
One Odd Example -- PLT

Make use of radio frequency signals applied on the power lines used for the distribution of mains electricity. Because electrical power lines are not designed for the transmission of high data rate signals, PLT signals on electrical power lines have the potential of causing interference to radiocommunication services.

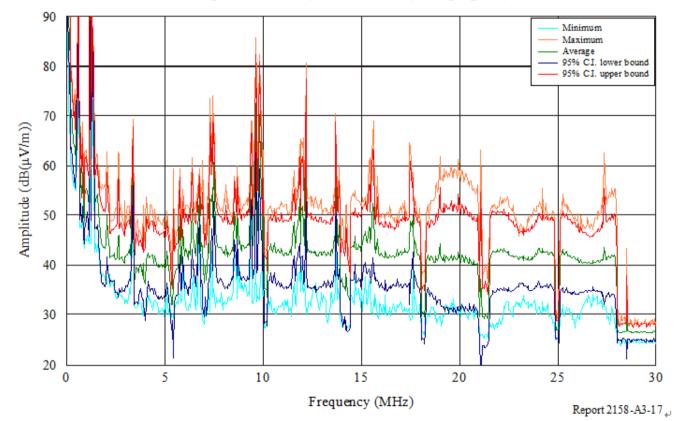
 \rightarrow PLT devices are regarded to be ITE \rightarrow CISPR22 seems to be applied



Photos



IUCAF School in Santiago

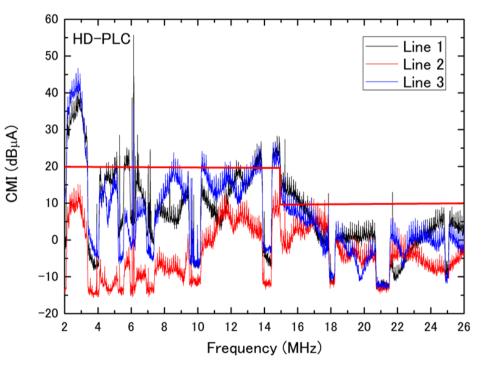


Measurements in Canada (from Rep. ITU-R SM.2158)

FIGURE A3-17+

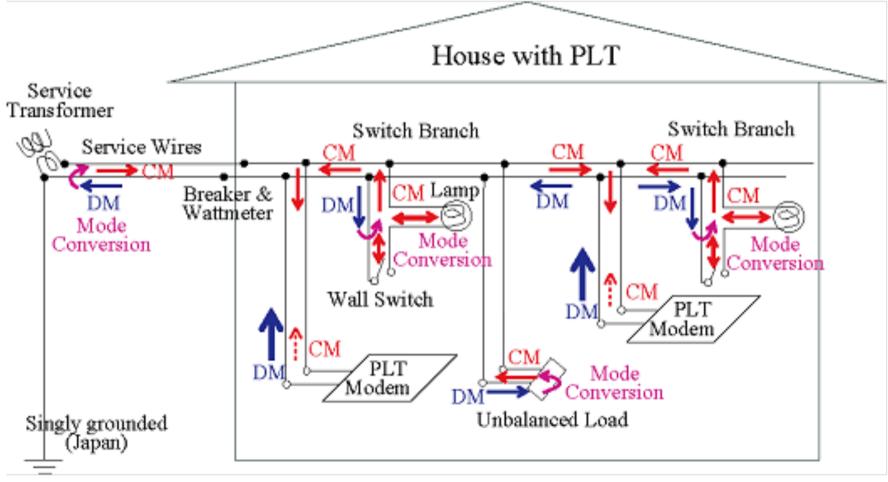
RF field strength distribution, PLT Device 3 (Homeplug AV) at 10 m.

IUCAF School in Santiago


Common Mode Current (CMI) Distribution


Exceeds the CMI limit at around ~3MHz (by ~20dB)

Larger than at modem output


Very large variation: Max - Min ~ 60dB

→ Standing wave / mechanism to generate CMI

Radiation Mechanism

2014 April 10

Summary

- Radio noise from "unintentional radiators" are regulated according to CISPR publications and their regional/national variances.
- For most cases CISPR standards work
- There are exceptions that the CISPR regulations can not work.
- ITU-R needs to collaborate with CISPR for suppressing radiated emissions to protect radiocommunication services.