

The MeerKAT Radio Telescope

IUCAF Summer School STIAS Stellenbosch – 2nd March 2020

SARAO

South African Radio Astronomy Observatory

NRF

Foundation

National Research

Justin Jonas Chief Technologist: SARAO Director: RATT, Rhodes University

SKA/MeerKAT site (& HIRAX & C-BASS & HERA)

2

RFI Survey with ICASA

SKA1-mid and 120 000 ha

Meerkat National Park

L-band RFI

L-band Avionics

8

SSR & ADS-B

RFI Montioring Station ASC Fri Feb 1 00:00:00 2019 to Thu Feb 28 23:00:00 2019 (f = 1089 to 1091 MHz Aircraft SSR Extended)

L-band RFI – GNSS & Avionics

Avionic & GNSS signals

11

COMRAD Passive Radar

SKARAB

So how did we get here?

- The MeerKAT Challenge

 Build a world leading radio telescope
 - for a fixed cost
 - within a fixed schedule.

-Be an SKA *precursor* telescope.

Design Parameter Space

- Requirements
 - Sensitivity
 - Field of View
 - Angular resolution
 - Instantaneous bandwidth ngin
 - Dynamic range
 - Stable and smoc" instrumenta'
 - RFI/EM

- Constraints
 - Capital

a transport cost

Jost

- Data storage cost
- Maintenance cost

Concept Exploration to fully sample this or space and perform trade-off studies against constraints.

Validate cost and performance using **Prototypes**.

Julty

ຸວtion

In the beginning there was KAT

~ 2003

SKA technology pathfinder with high risk options

XDM 15-m composite & PAFs

HartRAO 26-m & XDM 15-m

Establishing the Karoo site

KAT-7 12-m

Design Parameter Space

- Sensitivity
- Field of View
- Angular resolution
- Instantaneous bandwidth
- Sky coverage
- Dynamic range
- Stability
- RFI/EMC
- Reliability/availability
 - Need to do a thorough Concept Exploration to fully sample this parameter space and perform trade-offs.

- Capital cost
- Power consumption
- Compute cost
- Data transport cost
- Data storage cost
- Maintenance cost

Dish Optical Configurations

Example of CoDR Study: Receptor

KAT-7 – (not a MeerKAT prototype...)

- Symmetric centrefed dish
- Wide flare corrugated horn
- Compact OMT
- Stirling cycle cryogenics
- Water cooling
- Ion vacuum pump
- RF-over-fibre
- Heterodyne Rx
- Casper/Roach DSP

Costs more, but:

Unblocked aperture. "Good" beam and Aperture efficiency.

Large volume for multiple receivers and associated services. Easy access.

Low ground spillover.

Comparison of beam patterns

High Level Description

- 64 x 13.5 m offset Gregorian antennas
 - Compact core (1 km diameter)
 - 8 km maximum baseline
- 3 cryogenic single pixel receivers
 - UHF 0.580-1.015 GHz
 - L-band 0.9-1.67 GHz (T_{sys} ~15K)
 - S-band (MPIfR) 1.75-3.5 GHz
 - X-band 8-14.5 GHz
- Channelization
 - 1k wideband (pulsars)
 - 4k wideband (continuum)
 - 32k wideband (spectral line)
 - 32k narrowband (BW=F_{samp}/2^N spectral line)
- Correlator/Beamformer
- User supplied backends
 - PTUSE (MeerTIME)
 - FBFUSE+APSUSE+TUSE (TRAPPUM)
 - BLUSE (Breakthrough Listen)
- Science Data Processing and Archive
- MeerKAT Extension

MeerKAT Configuration (64 antennas)

MeerKAT-64 Configuration

Dish panel factory

Carbon-fibre Subreflector

Pedestal fabrication & integration

Off and on-site production line

"Traditional" paneled dish

In silicon and in the Karoo

MeerKAT core antennas

System Architecture

Receivers

Distribution

and GPS

Cryogenic, 1.85:1 bandwidth Rx

 T_{rec} ~7K

Cryogenic Receivers & Services

MPIfR S-band receiver

Rx horns are close to the ground

Digitizers

- ~1 DVD per second per antenna
- Array would produce a 12 km high stack of DVDs per day

Close to receiver horns

Shielded Equipment Room

Shielded Data Rack Room

46

Time and Frequency Reference

Time and Frequency Reference

GNSS Common View UTC transfer

Correlator/Beamformer

SKARAB Correlator/Beamformer

SKARAB

Science Data Processing

Deployed Infrastructure (as at Oct 2018) – 1st Tier

Realtime Mesos Cluster : Ingest + Cal

100 TFLOPs, 6TB RAM

Batch Cluster : Spectral + Continuum Imaging

1.5 PFLOPs, 4TB RAM, 1 PB scratch

Object Storage : Vis Data + Science Products

cluster1: 5.4 PiB – production – 1 PiB used cluster3: 12.2 PiB – ready for production

Archive at CHPC in CT

CEPH Archive and Tape Library at CHPC

User Supplied Equipment

User Supplied Equipment

Power Cables In

User Supplied Equipment (USE)

- **BLUSE** Breakthrough Listen (formerly SETI)
 - **FBFUSE** Filter Banked Beamformer (MPIfR)
- APSUSE Accelerated Pulsar Search (MPIfR) TUSE MeerTRAP

(Manchester)

PTUSE Pulsar Timing (Swinburne)

FBFuse, APSuse, Tuse & PTuse

Breakthrough Listen - BLuse

New Partnership Between SKA Precursor Telescope MeerKAT & SETI Programme Breakthrough Listen

Bremen, Germany – October 2, 2018 – Breakthrough Listen, the global initiative to seek signs of intelligent life in the universe – announced today at the International Astronautical Congress the commencement of a major new programme with the MeerKAT telescope in partnership with the South African Radio Astronomy Observatory (SARAO).

Breakthrough Listen's MeerKAT survey will examine a million individual stars – 1,000 times the number of targets in any

previous search – in the quietest part of the radio spectrum, monitoring for signs of extraterrestrial technology. With the addition of MeerKAT's observations to its existing surveys, *Listen* will operate 24 hours a day, seven days a week, in parallel with other surveys.

Observations will occur in a *commensal mode* – at the same time as other astrophysics programs. Using sophisticated processing, *Breakthrough Listen* scientists will digitally point the telescope at targets of interest. This means that the *Breakthrough Listen* instrument at MeerKAT will be operating almost continuously, scanning the skies for signs of intelligent life.

"Collaborating with MeerKAT will significantly enhance the capabilities of *Breakthrough Listen*", said Yuri Milner, founder of the Breakthrough Initiatives.

Bunker – RFI & temperature

Transformer, Switchgear & DRUPS

Shielded room

Digitizer in reverb chamber

Zoom in on culprits

72
SDC test jig at Houwteq

MeerKAT extension

Add 20 SKA dishes at SKAmid locations out to where buried cable reticulation ends.

ιU