

Radio Astronomy & Radio Telescopes

Tasso Tzioumis *(Tasso.Tzioumis@csiro.au)* Australia Telescope National Facility (ATNF)

sms2020, Stellenbosch 2-6 March 2020

CSIRO ASTRONOMY AND SPACE SCIENCE

www.csiro.au

300,000 light-years

3 light-years

Radio Astronomy – ITU definition

- **1.13** *radio astronomy*: Astronomy based on the reception of *radio waves* of cosmic origin.
- **1.5** *radio waves* or *hertzian waves*: Electromagnetic waves of frequencies arbitrarily lower than 3 000 GHz, propagated in space without artificial guide.
- Astronomy covers the whole electromagnetic spectrum
- Radio astronomy is the "low energy" part of the spectrum

Radio Astronomy "special" characteristics Technical challenges

- Very **faint** signals measured in 10⁻²⁶ W/m²/Hz (-260 dBW)
 - *"Power collected by all radiotelescopes since the start of radio astronomy would light a 1W bulb for less than 1 second"*
 - → Need "sensitivity" i.e. large antennas and/or arrays of many antennas
 - \rightarrow Very **susceptible** to intereference
- Celestial structures at all scales: from very large to very small
 - \rightarrow Need "spatial resolution" i.e. ability to see the details at all scales
 - \rightarrow Need large antennas and/or arrays of many antennas
- Astronomical events at all timescales(from < 1ms to > millions years)
 & and at all spectral resolutions (from < 1 Hz to GHz)
 - → Need very high **time** and **frequency resolution**

• → Sensitive telescopes and arrays & extreme technical challenges

Radio Astronomy "special" characteristics Scientific challenges

- Radio can "see" through dust and clouds
 - Probe space inaccessible to "traditional astronomy"
- Radio is a large part of the EM spectrum
 - Access unique phenomena and physics
- Radio spectrum contains many spectral "lines"
 - Markers of molecules and atoms astrochemistry
 - Frequencies fixed and cannot be chosen
 - \rightarrow Need access to special portions of the spectrum
- Universe is expanding (since the Big Bang)
 - Doppler shift (redshift) moves the lines to other parts of the spectrum !!
- Sensitivity (continuum) depends on Bandwidth need spectrum!
- → Need access to ALL parts of the radio spectrum!!

Special window to the Universe

- Radio astronomy only ~ 60 years old
- Many phenomena occur only in radio
- → 4 Nobel prizes in Physics!!!
 - 1974 Aperture synthesis and Pulsars
 - 1978 Cosmic Microwave Background (discovery)
 - 1993 Pulsars and Gravitational effects
 - 2006 Cosmic Microwave Background (form and anisotropy)
- Technical challenges produce significant commercial spin-offs
 - State-of-the-art antennas and receivers for communications
 - E.g. wi-fi development at CSIRO from radio astronomy techniques
 - Commercial patent of many \$100M

RAS Telescopes

- Brief History
- Telescopes
 - Dishes
 - Arrays
 - Dipole arrays
 - Aperture arrays
 - The (near) Future
- NOT a comprehensive list
- Just a pictorial guide no detailed descriptions

Karl Jansky - Bell Telephone Laboratory 1932

Discovery as "cosmic hiss" – interference to communications!!

First Dish – Grote Reber 1937 32' parabola at Home!

Parkes 64m, Australia 1960

Radio telescope

- Mount types:
 - Alt-Az
 - HADEC or Equatorial

• X-Y

- Feed Geometry:
 - Prime-focus
 - Cassegrain (subreflector)
 - Gregorian
 - Beam wave-guide

CSIRC

Offset feed

Feeds – Single; Multiple Beams; PAFs

Radio Interferometry

Simple Interferometer

- **Baseline B**: Distance between antennas
 - "Virtual" telescope of diameter
 B.cos \$\u03c6\$ (projected baseline)

• Fringe pattern provides information on structure and position of the radio source

Fringe Pattern

Earth Rotation Aperture Synthesis

- Baseline length and orientation (as viewed from the source) changes as the Earth rotates \Rightarrow new information on source structure.
- **uv-diagram** an indicator of imaging "quality" of an array of antennas
 - more antennas \Rightarrow filled uv \Rightarrow better image fidelity

Brewster, WA

Owens Valley, CA Pie Town, NM Mauna Kea, HI Kitt Peak, AZ Ft. Davis, TX

VLBA – only dedicated VLBI array

EVN -European VLBI Network

The ISAS satellite HALCA and the Usuda 64m antenna conducted their first successful interferometric test on 7th May 1997 during observations

Why?

The wonders of the Universe

A very eclectic selection: mainly work that I have been involved with (every astronomer would have a different list)

Black Holes and Jets in Galaxies

Nearest Active Galaxy – Central Black Hole + Jets

SS433

- X-ray binary
- Precessing jets
- 0.26c jet speed
- Baryonic jets

Radioastronomy & Radio telescopes | Tasso Tzioumis

(3)

Amy Mioduszewski Michael Rupen Craig Walker Greg Taylor

sociated Universities Inc

Gravitational lensing

Double-quasar 0957+561 - VLBA+EVN, 18cm

Radioastronomy & Radio telescopes

Tasso Tzioumis

PKS1830-211 Einstein Ring MERLIN, 5cm

 Lensing of background quasar by intervening massive galaxy cluster

The evolving supernova remnant 1987A

Pulsars - Cosmic lighthouses

VLBI determination of the Huygens descent trajectory

CSIRO

~100 km A priori accuracy: "Doppler interferometry": **Full VLBI accuracy:** Radioastronomy & Radio telescopes Tasso Tzioumis

Square Kilometre Array SKA

Square Kilometre Array

Current radio telescopes based on pre-1980s technology Science now demands:

- 1. Large increase in sensitivity \rightarrow 1km² (~50 x)
- Observe neutral hydrogen throughout the universe
- 2. Large increase in field-of-view \rightarrow 50deg² (~200x)
- Survey entire sky
- 3. High spatial resolution \rightarrow 1mas (Already achieved)
- Resolve protoplanetary disks

Discovery Potential = Area X f.o.v. ~ 10000 x

Adaptive nulling

SKA Key Science Drivers

Probing the Dark Ages When & how were the first stars formed? Cosmology and Galaxy Evolution Nature of Dark Energy and Dark Matter Strong-field tests of General Relativity Was Einstein correct? Origin & Evolution of Cosmic Magnetism Where does magnetism come from? Cradle of Life What and where are the conditions for life?

The Cradle of Life SKA Role Movies of proto-planetary disks in formation milliarcsec $cm \lambda$ resolution **Theoretical Simulation** Probe the **Composition** of 'building blocks' of 'Habitable zone' in disks disks

Complements ALMA Complementary to (and surpasses) ALMA/ELT

Thank you

CSIRO Astronomy and Space Science Tasso Tzioumis ITU-R WP7D Chair

- t +61 2 9372 4350
- e tasso.tzioumis@csiro.au
- w www.atnf.csiro.au

<text><text><text><text><text><text>

CSIRO ASTRONOMY AND SPACE SCIENCE www.csiro.au

