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Abstract

The real sensitivity of radio astronomical stations is often limited by man-made radio emissions, radio
frequency interference (RFI) due to activities such as broadcasting operations, radars, and a variety of com-
munication and radiolocation systems. Time-frequency analysis with high temporal and frequency resolution
allows us to detect and excise RFI better than can be done with existing standard radiotelescope backends.
The statistical errors of the total power, correlation factor and spectral density may be substantially reduced
when robust statisitical methods are applied to data.

1 Introduction

Radio frequency interference (RFI) substantially limits a radiotelescope’s real sensitivity, [1-10]. Several
methods of RFI mitigation have recently been proposed [11-33]. These methods can be applied both to existing
radiotelescopes and to future projects, [34-37]. One of the main tools of real-time RFI mitigation is the time-
frequency analysis of received signals with a high temporal (less than 1 microsecond) and frequency (less than
1 kiloHertz) resolution. This approach allows us to analyze statistics of the mixture “system noise + source
noise + RFI” and to separate RFI from the Gaussian probability distribution function of the “system noise +
source noise”. Application of modern, robust, statistical methods to the non-Gaussian RFI mitigation problem
is considered in this paper.

2 Conventional measurement schemes

There are three main types of radioastronomical statistical measurements:
a) measurement of variance or total power (making a map with a single dish, or pulsar observations);
b) measurement of correlation function (aperture synthesis, polarization observations);
c) measurement of power spectrum (spectral line observations).

2.1 Total power measurements

Figure 1 illustrates the simplified scheme of a single dish radio telescope with a total power radiometer at
the output. In the absence of RFI the sum “system noise + source noise” is random noise with a Gaussian
probability density function (PDF), zero mean and variance equal to the sum of the system noise’s variance
and the source noise’s variance. For n independent “clean”(no RFI) samples x1, x2, ...xn, (upper waveform),
their joint PDF is the product L(x | σ) = p(x1 | σ)p(x2 | σ)...p(xn | σ) =

∏n
i=1

1
σ
√

2π
exp(− x2

i

2σ2 ), where σ is the
parameter to be measured. Classical statistics gives the Maximum Likelihood (ML) estimate σ0 which is the
solution of the equation:

n∑
i=1

∂

∂σ
log L(xi, σ) |σ=σ0= 0. (1)

Therefore, for the Gaussian PDF, σ̂2
0 = 1

n

∑n
i=1 x2

i , which is precisely the output of the total power detector
(TPD). This value is proportional to the sum: system temperature + source antenna temperature, σ̂2 ∼
Tsys + Ta. But in the presence of RFI, (lower waveform), the TPD output will be substantially different.

2.2 Correlation function

Figure 2 illustrates the simplified scheme of a two-element radio-interferometer. The bivariate Gaussian
PDF for each pair of samples from the two sites in the absence of RFI is

p(x, y) =
1√

2πσ1σ2(1 − r2)
exp[− 1

2(1 − r2)
(
x2

σ2
1

− 2r
x

σ1

y

σ2
+

y2

σ2
2

)]. (2)
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3 Several examples

Several examples of computer simulations of radioastronomical observations with RFI are given in this
subsection. Figures 3, 4, 5, 6 all have the same structure: (a) a sample of “clean” Gaussian noise (no RFI);
(b) a set of estimates derived from successive samples of “clean” noise, which correspond to an “off-source
⇒ on-source ⇒ off-source” observational set; (c) a sample with strong burst-like RFI; (d) the comparable
set of estimates derived from the contaminated noise, which produces no visible “on-source” step; (e) the set
of comparable estimates provided by a robust statistical algorithm (which will be specified in the following
sections).

These figures obviously show that the ordinary backend processing (section 2), which is optimal for a
Gaussian PDF, works extremely badly for a contaminated Gaussian PDF:

Pε(x, σ0, σ1) = (1 − ε)P (x, σ0) + εP (x, σ1), 0 < ε < 1, (6)

where P (x, σ0) is the “clean” PDF, σ0 is the parameter to be measured, P (x, σ1) is the contaminating PDF, ε
characterizes the fraction of P (x, σ1) in the total Pε(x, σ0, σ1).

There are several ways to characterize the robustness of a statistical procedure. One of the most adopted is
the influence function.

4 Influence function

Let T = {Tn} be a sequence of estimates of a parameter θ. Tn(X) denotes the estimate made from the
samples X = (x1, ...xn) and Tn+1(x,X) denotes the same estimate based on the sample (x, x1, ...xn), that is
one more sample x is added. The influence function (IF) is defined as

ϕn(x,X) = Tn+1(x,X) − Tn(X). (7)

This function characterizes the sensitivity of the estimate Tn to the adding of one sample x. For example, the
IF for the sample mean Tn = 1

n

∑n
i=1 xi is

ϕn(x,X) =
x

n + 1
− 1

n(n + 1)

n∑
i=1

xi =
x

n + 1
+ O(

µ

n
). (8)

Therefore, the IF is not bounded, and an outlier can cause an unbounded error.
The IF for the sampled variance is

ϕn(x,X) =
x2 − σ̂2

n

n + 1
, (9)

that is for |x| < σn the estimate is slightly reduced, but when |x| → ∞, the error grows very rapidly following
the square law.

The next section is dedicated to robust algorithms which are less susceptible to the outliers, and the IF
for these algorithms is given.

5 Robust algorithms

5.1 Nonparametric statistics

One of the simplest methods to overcome the lack of robustness is to analyze the“heavy tails” of the
contaminated sample PDF (6). Let (x1, ...xn) be a sample consisting of n independently observed values of a
random variable x with a PDF P (x). If we arrange the x in increasing order (denoting the smallest by x(1), the
next smallest by x(2), etc.),

x(1) < x(2) < ... < x(n),

then we call each of them an order statistic. Let r = r1 + r2 order statistics from the tails be thrown away, so
that the estimate of a parameter will be based on the remained samples

x(r1+1) < x(r1+2) < ... < x(n−r2).
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Fig. 1, (left panel). Single dish radiotelescope with the total power detector at the output, V AR is the variance
of the noise at the receiver output in the absence of RFI, Tsys and Ta are the system and radio source antenna
temperature, respectively, G is the receiver gain, B is the bandwidth. The waveforms illustrate the receiver’s
voltage output without and with RFI (before the total power detector and correlator).
Fig. 2, (right panel). Radio interferometer with the correlator at the output.

The ML estimates of the correlation factor r and the variances σ2
1 , σ2

2 are

r̂ =
1
n

∑n
i=1 xiyi√
σ̂2

1 σ̂2
2

, (3)

σ̂2
1 =

1
n

n∑
i=1

x2
i , σ̂2

2 =
1
n

n∑
i=1

y2
i , (4)

which are not statistically stable (robust) in the presence of outliers from RFI, as in the waveforms of Fig. 2.

2.3 Power spectrum

The power spectrum is measured during spectral-line observations using either the autocorrelation function
(after a Fourier transform, with the XF spectrometer), or directly after averaging M instantaneous spectral
densities at the receiver output (FX spectrometer):

Ŝ(k) =
1
M

M−1∑
m=0

{[
N−1∑
n=0

xncos(2πn
k

N
]2 + [

N−1∑
n=0

xnsin(2πn
k

N
]2} (5)

This estimate is statistically unstable (sensitive to the outliers) as well.
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Fig. 3 (left panel). a) Noise with a the Gaussian PDF, µ = 0, σ = 0.5, and no interference.
b) Estimate of the variance σ̂2 of the Gaussian PDF (sample variance) at 300 points, each point being the
estimate derived from n=1000 samples of the noise stream illustrated in Fig. 3a. Two steps at M1=100 and
M2=200 (“on source”, ∆σ = 0.1) are visible.
c) Noise with a Gaussian PDF, µ = 0, σ = 0.5, and interference: random impulses from a Poisson distribution
(λp = 0.05) and lognormal distribution of amplitudes (mean=2R, standard deviation =1R, R=10) replace
some variates. Note the vertical scale, which is 500 times larger than in Fig. 3a.
d) Estimate of the variance σ̂2 of the Gaussian distribution (sample variance) at 300 points, each point is the
estimate from n=1000 samples of the noise stream illustrated in Fig. 3c. No change of the mean is visible; the
standard deviation = 1824 is 12680 times larger than in Fig. 3b.
e) Robust estimation of the variance σ̂2 of a Gaussian PDF at 300 points, each point being the estimate from
n=1000 samples of the noise stream illustrated in Fig. 3c. Two steps at M1=100 and M2=200 (“on source”,
∆σ = 0.1) are clearly visible. Standard deviation of the averaged data = 0.014.

Fig. 4 (right panel). a) Noise with a Gaussian PDF, µ = 0, σ = 1, and no interference.
b) Cross-correlation function of two signals like that in Fig. 4a with a coherent component ∆σ = 0.5 between
points M1=200 and M2=400 (“on-source”); each point corresponds to the estimated cross-corr derived from
1000 sequential variates in the data stream illustrated by Fig. 4a.
c) Noise with a Gaussian probability distribution, µ = 0, σ = 1, and interference: random impulses from a
Poisson distribution (λp = 0.05) and lognormal distribution of the amplitudes (mean = 2R, standard deviation
= 1R, R=10) replace some variates. Note that the vertical scale is 400 times larger than in Fig. 4a.
d) Cross-correlation function of two signals like that illustrated by Fig. 4c, with a coherent component ∆σ = 0.5
between M1=200 and M2=400 (“on-source”); each point corresponds to the estimate from 1000 variates. No
change in the cross-correlation coefficient is visible.
e) Robust cross-correlation function of the two signals with RFI and a coherent component ∆σ = 0.5 between
points M1=200 and M2=400; each point corresponds to the estimate derived from 1000 variates. The steps at
M1=200 and M2=400 are clearly visible, though the standard deviation is slightly larger than in the absence
of interference.
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Fig. 5 (left panel). a) Noise with an exponential probability distribution, λe = 2.0, and no interference.
b) Estimate of the λe of the exponential distribution (sample mean) at 300 points, each point being the
estimate from n=1000 samples of the noise illustrated in Fig. 5a.
c) Noise with an exponential probability distribution, λe = 0.5, and interference, together with random
impulses from a Poisson distribution (λp = 0.05) and lognormal distribution of the amplitudes (mean=2R,
standard deviation =1R, R=10). Note the vertical scale is 20 times larger than in Fig. 5a.
d) Estimate of the λe of the exponential distribution (sample mean) at 300 points, each point being the
estimate from n=1000 samples of the noise stream illustrated in Fig. 5c. There is no visible change of the
mean. The standard deviation = 4.841, which is 177 times larger than in Fig. 5b.
e) Robust estimate of the λe of the exponential distribution (mean) at 300 points, each point being the estimate
from n=1000 samples of the noise in Fig. 5c. The two steps at M1=100 and M2=200 (“on-source”, ∆λe = 0.5)
are clearly visible. Standard deviation of the averaged data = 0.027.

Fig. 6 (right panel). a) Noise from a Gaussian PDF, µ = 0, σ = 1, and no interference.
b) Cross-correlation function of two signals with a coherent component ∆σ = 0.5 between M1=200 and M2=400
(“on-source”); each point corresponds to the estimated cross-corr derived from 200 sequential variates in the
data stream illustrated by Fig. 6a.
c) Noise with a Gaussian probability distribution, µ = 0, σ = 1, and interference: random impulses from a
Poisson distribution (λp = 0.05) and lognormal distribution of the amplitudes (mean = 2R, standard deviation
= 1R, R=10) replace some variates. Note the vertical scale is 400 times larger than that in Fig. 6a.
d) Cross-correlation function of two signals like those of Fig. 6c, with a coherent component ∆σ = 0.5 between
M1=200 and M2=400 (“on-source”); each point corresponds to the estimate from 200 samples from the noise
stream of Fig. 6c. There is no visible change in the cross-correlation coefficient.
e) Spearman rank cross-correlation function of two signals like that of Fig. 6c with a coherent component
∆σ = 0.5 between M1=200 and M2=400: each point corresponds to the estimate from 200 samples dreawn
from a noise stream like Fig. 6c. The steps at M1=200 and M2=400 are clearly visible, and the standard
deviation is practically the same as in the absence of interference.
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The samples are thus censored. Two options are possible [41]:
1. Trimming: all measurements outside the interval [x(r1+1), x(n−r2 ] are removed.
2. Winzorisation: the “left tail” is pulled to the value x(r1+1), so that all x < x(r1+1) are equated to x(r1+1), and
the “right tail” is likewise pulled to the value x(n−r2). The mean, variance and other parameters are calculated
with the remained samples. The estimate functions and the influence functions for the trimmed, winzorized
and ordinary variance are given in Fig. 7 and 8 respectively. The trimmed and winzorized estimates are more
robust, and the corresponding IFs are bounded.

If n is odd, that is n = 2m − 1, then the middle value x(m), or else, the sample median, is also a robust
estimate of the mean for symmetrical PDF, and the median deviation around the sample median

s2 = median1≤i≤n{|xi − median1≤i≤n{xi}|}/0.6745 (10)

also has good robustness.

5.2 M-estimates

A more universal approach was proposed in [38]. In general, the estimate of a PDF’s parameter θ is the value
θ̂ minimizing the sum

n∑
i=1

ρ(xi, θ̂) → min, (11)

where ρ(xi, θ̂) is a continuous and differentiable function on x and θ̂. For example, for the mean ρ(x − x̂) =
(x− x̂)2, and for the median ρ(x−med) = |x−med|. After the differentiation of (11) with respect to θ̂ we get

n∑
i=1

Ψ(xi, θ̂) = 0, (12)

where the anti-symmetric function Ψ is called a score function and the estimate is called an M-estimator.
Again for the mean Ψ(x− x̂) = x− x̂, and for the median Ψ(x−med) = sgn(x−med). The influence function
for the M-estimator has a form:

ϕ(x) =
Ψ(x − θ̂)

Ψ′(x − θ̂)
. (13)

The maximum likelihood (ML) estimate corresponds to ρ(x) = −log[p(x)], where p(x) is the PDF.
The score function Ψ for the estimate of a mean was found [38] for the worst contaminating “heavy-

tailed” symmetric PDF (Laplace PDF) to be

ΨHuber(x − θ̂) =


−k, if x − θ̂ < k,

x − θ̂, if − k ≤ x − θ̂ ≤ k,

k, if k < x − θ̂

(14)

where k depends on ε in the following way:

1
1 − ε

= 1 − 2Φ(−k) +
2
k

p(k), and Φ(z) =
∫ z

−∞
p(x)dx, (15)

p(x) is the Gaussian PDF with zero mean and a variance of 1. Several other functions Ψ(x) for the robust
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estimates were proposed, [40, 41, 42]:

ΨAndrews(x) =

{
sin(x/a) if |x| ≤ aπ,

0 if |x| > aπ
; (16)

ΨHampel(x) =


x if |x| ≤ a

a × sign(x) if a < |x| ≤ b
a×sign(x)(c−|x|)

c−b if b < |x| ≤ c

; (17)

ΨTukey(x) =


0 if |x| > c

x(1 − x2)2 if |x| < 1
0 if |x| ≥ 1

; (18)

ΨMeshalkin(x) = x × exp(−λx2/2), λ > 0. (19)

The parameters a, b, c, λ are tuned for the particular contaminated PDF (6). Fig. 7 gives the estimate
functions of the variance for the three cases: Maximum Likelihood (nonrobust), Huber (14), and Meshalkin
(19), while Fig. 8 illustrates the corresponding influence functions.

Now we can go to the low panels in Fig. 3, 4, 5, 6, where the simulation results are given for the robust
estimates.

Figure 3e illustrates application of robust estimation to the variance σ̂2 of the Gaussian PDF. With the
assumption that the mean is equal to zero, the estimate equation (12) is

n∑
i=1

(
x2

i

σ̂2
− 3/5)exp(−x2

i /3σ̂2) = 0. (20)

The steps due to the “off-source → on-source → off-source” are clearly visible, while the input data xi were
taken from the data stream illustrated by Fig. 3c.

Figure 4e illustrates the advantage of robust processing in the case of a correlator (Fig. 2). The cross-
correlation coefficient between random samples x1i and x2i is calculated with

r̂12 =
1

n
√

σ̂12σ̂22

n∑
i=1

x1i exp(− x12
i

3σ̂12
)x2i exp(− x22

i

3σ̂22
), (21)

where the robust estimates of σ̂12 and σ̂22 were found using (20), and each product x1ix2i is exponentially
weighted: the larger the variate, the lower its weight, thus eliminating the outliers.

Figure 5e shows the robust estimatation of the power spectrum at the output of an FX spectrometer (instead
of the straight averaging of (5)). The root of the following equation yields the estimate of the parameter λe of
an exponential PDF [42]:

n∑
i=1

(
xi

λe
− 2/3)exp(− xi

2λe
) = 0. (22)

Figure 6e illustrates the application of a nonparametric procedure, Spearman’s rank-order correlation co-
efficient [43]. The ranks ξi and ηi of the samples x1i and x2i are their numbers in the order statistics (see
subsection 5.1). The Spearman’s rank-order correlation coefficient is calculated from the ranks instead of the
variates (as in (3)) via

R =
3
∑n

i=1(2ξi − n − 1)(2ηi − n − 1)
n(n − 1)(n + 1)

. (23)

A significant improvement in the outcome is clearly visible in Fig. 6e.
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Fig. 7, (top left). Score functions for the Gaussian PDF, µ = 0, σ = 1.0.
Fig. 8 (top right). The influence functions corresponding to Fig. 7.
Fig. 9, (middle left). Time-frequency 3D-presentation of the power spectrum with system noise, RFI and
spectral lines, from a computer simulation using equation 5.
Fig. 10, (middle right). Time-frequency 3D-presentation of the robustly estimated power spectrum, which
suppresses RFI: the spectral line is visible.
Fig. 11, (bottom left). The averaged power spectra corresponding to Fig. 9 (upper panel) and to Fig. 10
(lower panel).
Fig. 12, (bottom right). Real observations at RATAN-600, λ = 31cm, 20.08.1996, scan of the source 1116+28,
upper panel - with RFI and without RFI excision,
lower panel - the same radio source with outliers excised before averaging, both records were made simultane-
ously.
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Fig. 13. Observation at WSRT n.10300911, 29 Jan 2003, source 3C48, frequency 337 MHz, bandwidth 10
MHz, DZB correlator, 60 s integration time for each of 131 records (≈ 2h). RFI was suppressed at channels
RT5X and RT7X, but not suppressed at channels RT4X, RT6X. The time-frequency presentations of the cross-
correlation amplitudes are given: 4X6X - left panel, 5X7X - right panel.

These algorithms work well with RFI bursts in the temporal domain, but they do not “see” narrow-band
RFI, which is sometimes hidden under the system noise. On the other hand RFI of this type can be easily
detected in the frequency domain as bursts above the level of the system noise spectral power density, and a
robust algorithm can be applied in the frequency domain. It is worth remembering here that the power density
calculated after the Fourier transform of one sequence of sample data, see (5), for M = 1, has an exponential
PDF for each frequency bin, when the PDF of noise in the temporal domain is Gaussian. Figures 9, 10 & 11
illustrate the application of the robust Meshalkin procedure [42] to the estimation of the parameter λe in the
exponential PDF. The solution of equation (12) has the score function

Ψ(x) = (
x

λe
− 2/3)e−x/2λe . (24)

RFI was simulated as sequences of a continuous wave with two different frequencies and random start times
and amplitudes. The signal of interest is represented as a “spectral line”: narrow-band noise is superposed
with the system noise. Fig. 9 shows the 3D-presentation of the time evolution of the power spectrum with
RFI that was calculated using equation 5: each section corresponds to the averaging of M = 50 spectra, and
the number of frequency channels is 512 (N = 1024). Fig. 10 is the 3D-presentation of the sequence of the
robustly estimated power spectra, and Fig. 11 gives the averaged spectra on a logarithmic scale, corresponding
to Figs. 9 & 10: upper panel is the averaged spectrum without robust processing; the lower panel illustrates
the averaged spectrum obtained after using a robust algorithm.

It should be noted that there are always certain losses after the application of robust algorithms. The
variance of the robust estimate is, as a rule, higher than that for the “ideal” case (no RFI and ML algorithm),
and the ratio of the estimation variances can achieve 1.5-2 in favour of the “ideal” case. But in the presence of
strong RFI, these losses are more tolerable than the total loss of the observations.

Figures 12 and 13 show examples of real-time signal processing (trimming) applied during observations
at RATAN-600 and WSRT, respectively. Figure 12 illustrates RFI mitigation with a total power detector:
λ = 31cm, 20.08.1996, source 1116+28 is scanned by the radio telescope antenna pattern; upper panel - with
RFI and without RFI excision, lower panel - the same radio source with RFI excision, both records were made
simultaneously. The primary sampling interval (before averaging) was equal to 2 µs, the final averaging interval
is equal to 0.1 ms.

Figure 13 illustrates RFI mitigation with a radio interferometer, where cross-correlation is measured: source
3C48, frequency 337 MHz, bandwidth 10 MHz, DZB correlator, 60 s integration time for each of the 131 records
(≈ 2h). RFI was suppressed in the frequency domain at channels RT5X and RT7X and not suppressed at
channels RT4X, RT6X. The time-frequency presentations of the cross-correlation amplitudes are given:
4X6X - left panel, 5X7X - right panel. The right panel illustrates the effect of RFI suppression.



Figures 12 and 13 thus show that even simple, real time algorithms can give significant benefits.

6 Conclusions

1. Existing radio telescope backends process signals following classic maximum likelihood statistical algo-
rithms, which are optimal for a no-RFI environment. These procedures are not robust: they are statistically
unstable in the presence of outliers in the time or frequency domains, or, in other words, when the PDF is
contaminated.

2. Algorithms, developed to provide robust or nonparametric statistical output are more suited to our
worsening RFI situation. They also provide a much more acceptable level of residual errors in the presence of
strong RFI.

3. The implementation of real-time robust algorithms requires more computational power than is used in ex-
isting backends. The high performance of modern digital signal processing components (processors (DSP), field
programmable gate arrays (FPGA)) permit, however, the real-time implementation of many efficient robust
procedures. It is not always possible to combine such processing with existing radiotelescope infrastructure, but
future backends should be designed to implement robust algorithms.
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